Araştırma Makalesi
BibTex RIS Kaynak Göster

L-momentler ve Standart Yağış İndeksi SYİ Yardımıyla Seyhan Havzası Kuraklık Analizi

Yıl 2016, Cilt: 22 Sayı: 2, 196 - 215, 01.03.2016
https://doi.org/10.1501/Tarimbil_0000001381

Öz

Bu çalışmanın amacı Seyhan Havzası’ndaki 11 meteorolojik istasyonun uzun dönem aylık yağış değerlerine dayalı Standart Yağış İndeksi’ni SYİ kullanarak kuraklık takibi yapmak ve ayrıca ikinci olarak her istasyonun her yılı için1. IntroductionStandart Yağış İndeksi yönteminden elde edilen en kurak ayının yağış değerlerine indeks taşkın yöntemine dayalı L-momentler metodu uygulanarak bölgesel frekans analizi yapmaktır. Her istasyonun 3, 6, 9 ve 12 ay süreli SYİ değerleri hesaplanmıştır. Sonuçlara göre bütün istasyonlar kuraklık sınırındadır. Ortalama SYİ değerlerine göre en ıslak istasyon Ulukışla iken en kurak istasyon Karaisalı’dır. Kuraklık frekans değerlerine göre ise kuraklık meydana gelme frekansı en yüksek Karaisalı istasyonu iken kuraklık meydana gelme frekansı en düşük istasyon Tufanbeyli’dir. Sonuçlar gösteriyor ki, Seyhan havzası kuraklık sınırında ve biraz ıslaktır. Kuraklık oluşma frekansı % 47.7’dir. L-momentler metodu homojen bölgeleri belirlemek için kullanılmıştır. 3 ve 6 aylık minimum yağış serilerinden homojen bölgeler elde edilemezken 9 aylık minimum yağış serisinde havza iki kısma ayrılarak homojen alt havzalar elde edilmiştir. 12 aylık minimum yağış serisinde ise tüm havza homojen çıkmıştır. 9 aylık minimum yağış serisi için homojen iki alt havzaya en iyi uyan dağılım Pearson Tip 3 dağılımı iken 12 aylık minimum yağış serisi için tüm havzaya uyan en iyi dağılım Genelleştirilmiş Normal dağılım olmuştur

Kaynakça

  • Abolverdi J & Khalili D (2010). Probabilistic analysis of extreme regional meteorological droughts by L-Moments in a semi-arid environment. Theoretical and Applied Climatology 102: 351-366
  • Altın B T & Barak B (2012). Seyhan Havzasında 1970-2009 yılları arasında yağış ve hava sıcaklığı değerlerindeki değişimler ve eğilimler. Türk Coğrafya Dergisi 58: 21-34
  • Anlı S A, Apaydın H & Öztürk F (2009). Trabzon ilinde gözlenen yıllık maksimum yağışların bölgesel frekans analizi. Tarım Bilimleri Dergisi-Journal of Agricultural Sciences 15(3): 240-248
  • Anlı S A (2014). Güneydoğu anadolu bölgesinde referans bitki su tüketiminin (et0) zamansal değişimi ve rdi (keşif kuraklık indeksi) yöntemiyle meteorolojik kuraklık analizi. Tarım Bilimleri Dergisi-Journal of Agricultural Sciences 20(3): 248-260
  • Aydogan D, Kankal M & Önsoy H (2014). Regional flood frequency analysis for Çoruh Basin of Turkey with L-moments approach. Journal of Flood Risk Management doi: 10.1111/jfr3.12116
  • Blain C G (2012). Monthly values of the standardized precipitation index in the State of Sao Paulo, Brazil: Trends and spectral features under the normality assumption. Bragantia 71(1): 122-131
  • CSB (2011). Turkey’s National Climate Change Adaptation Strategy and Action Plan, T.R. Ministry of Environment and Urbanization, November 2011. Ankara (1st edition) http://www.csb.gov.tr/db/iklim/ editordosya/Adaptation_Strategy.pdf (Access Date 03.03.2014)
  • Dalrymple T (1960). Flood Frequency Methods. U. S. Geol. Survey, Water Supply Paper 1453 A, Washington, 11-51
  • Dodangeh S, Sattari M T & Seçkin N (2011). Minimum akımların L momentler yöntemi ile bölgesel frekans analizi. Tarım Bilimleri Dergisi-Journal of Agricultural Sciences 17: 43-58
  • Dubey A (2014). Regional flood frequency analysis utilizing L-moments: A case study of Narmada Basin. International Journal of Engineering Research and Applications 4(2): 155-161
  • Dutra E, Giuseppe D F, Wetterhall F & Pappenberger F (2013). Seasonal forecasts of droughts in African Basins using the standardized precipitation index. Hydrology and Earth System Sciences 17: 2359-2373
  • Edwards D C & McKee T B (1997). Characteristics of 20th century drought in the United States at multiple time scales. Climatology Report Number 97-2, Colorado State University, Fort Collins, Colorado
  • Eslamian S S & Feizi H (2006). Maximum monthly rainfall analysis using L-moments for an arid region in isfahan province, Iran. Journal of Applied Meteorology and Climatology 46: 494-503
  • Eslamian S, Hassanzadeh H, Abedi-Koupai J & Gheysari M (2012). Application of L-moments for regional frequency analysis of monthly drought indexes. Journal of Hydrologic Engineering 17(1): 32-42
  • Fang Y, Mauzerall D L, Liu J, Fiore A M & Horowitz L W H (2013). Impacts of 21st century climate change on global air pollution-related premature mortality. Climatic Change 121: 239-253
  • Fowler H J & Kilsbyc G (2003). A regional frequency analysis of United Kingdom extreme rainfall from 1961 to 2000. International Journal of Climatology 23: 1313-1334
  • Fujihara Y, Simonovic P S, Topaloğlu F, Tanaka K & Tsugihiro W (2008). An inverse modelling approach to assess the impacts of climate change in the Seyhan River Basin, Turkey. Hydrological Sciences Journal 53(6): 1121-1136
  • Gebeyehu A (1989). Regional Flood Frequency Analysis. The Royal Institute of Technology, Stockholm, Sweden, Bulletin No. TRIVA-VBI-148
  • Gingras D & Adamowski K (1994). Performance of L-moments and nonparametric flood frequency analysis. Canadian Journal of Civil Engineering 21(5): 856-862
  • Guenang M G & Kamga M F (2014). Computation of the standardized precipitation index (spi) and its use to assess drought occurrences in cameroon over recent decades. Journal of Applied Meteorology and Climatology 53: 2310-2324
  • Gurkan D (2005). Assessment of Climate Change Impacts on Surface Water Resources in Seyhan River Basin. MSc, Thesis, Hacettepe University (in Turkish, unpublished)
  • Guttman N B (1998). Comparing the palmer drought severity index and the standardized precipitation index. Journal of the American Water Resources Association 34(1): 113-121
  • Guttman N B (1999). Accepting the Standardized Precipitation İndex: A Calculation Algorithm. Journal of the American Water Resources Association 35: 311-322
  • Hosking J R M (1986). The Theory of Probability Weighted Moments. Research Rep. RC 12210, 160 pp. IBM Research Division, Yorktown Heights, NY
  • Hosking J R M (1990). L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society 52(2): 105-124
  • Hosking J R M & Wallis J R (1993). Some statistics useful in regional frequency analysis. Water Resources Research 29(2): 271-281
  • Hosking J R M & Wallis J R (1997). Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge University Press, UK
  • IPCC (2007). Intergovernmental Panel on Climate Change. http://www.ipcc.ch/ (Access Date 03.03.2014)
  • Jha S, Sehgal K V, Raghava R & Sinha M (2013). Trend of standardized precipitation index during Indian summer monsoon season in agro climatic zones of India. Earth System Dynamics Discussions 4: 429-449
  • Keskin F & Sorman A Ü (2010). Assessment of the Drought Pattern Change in Çamlıdere Basin Using SPI. BALWOİS 2010, 25-29 May Ohrid, Republic of Macedonia
  • Kömüscü A Ü (2001). An analysis of recent drought conditions in Turkey in relation to circulation patterns. Drought Network News (1994-2001). Paper 22
  • Landwehr J M, Matalas N C & Wallis J R (1979a). Probability weighted moments compared with some traditional techniques in estimating gumbel parameters and quantiles. Water Resources Research 15(5): 1055-1064
  • Landwehr J M, Matalas N C & Wallis J R (1979b). Estimation of parameters and quantiles of wakeby distributions. 1. Known lover bounds. Water Resources Research 15(6): 1361-1372
  • Landwehr J M, Matalas N C & Wallis J R (1979c). Estimation of parameters and quantiles of wakeby distributions. 1. Unknown lover bounds. Water Resources Research 15(6): 1373-1379
  • Li W, Fu R, Juarez R I N & Fernandes K (2008). Observed change of the standardized precipitation index, its potential cause and implications to future climate change in the amazon region. Philosophical Transactions of the Royal Society 363: 1767-1772
  • Lloyd-Hughes B & Saunders M A (2002). A drought climatology for Europe, International Journal of Climatology 22: 1571-1592
  • McKee T B, Doesken N J & Kleist J (1993). The Relationship of Drought Frequency and Duration to Time Scales. Reprints, 8th Conference on Applied Climatology, Anaheim, CA, USA, 179-184 pp
  • McRoberts B D & Nielsen-Gammon W J (2012). The use of a high-resolution standardized precipitation index for drought monitoring and assessment. Journal of Applied Meteorology and Climatology 51: 68-83
  • NASA (2010a). Is Current Warming Natural? http:// earthobservatory.nasa.gov/Features/ (Access Date: 03.03.2014)
  • NASA (2010b). Satellites Pinpoint Drivers of Urban Heat Islands in the Northeast. http://www.nasa.gov/topics/ earth/features/heat-island (Access Date: 03.03.2014)
  • Norbiato D, Borga M, Sangati M & Zanon F (2007). Regional frequency analysis of extreme precipitation in the Eastern Italian Alps in the August 29, 2003 flash flood. Journal of Hydrology 345: 149-166
  • Parida B P & Moalafhi D B (2008). Regional rainfall frequency analysis for botswana using l-moments and radial basis function network. Physics and Chemistry of the Earth 33: 614-620
  • Saf B (2009). Regional flood frequency analysis using l moments for the Buyuk and Kucuk Menderes river basins of Turkey. Journal of Hydrologic Engineering 14(8): 783-794
  • Seckin N & Yurtal R (2008). L-momentlere dayalı göstergesel metodu ile bölgesel taşkın frekans analizi. Ç.Ü. Fen Bilimleri Dergisi 19: 120-129
  • Seckin N, Yurtal R, Haktanır T & Doğan A (2010a). Comparison of probability weighted moments and maximum likelihood methods used in flood frequency analysis for Ceyhan River Basin. The Arabian Journal for Science and Engineering 35(1): 49-69
  • Seckin N, Yurtal R, Haktanır T & Topaloğlu F (2010b). Regional flood frequency analysis of Ceyhan River Basin in Turkey using L-moments method. Fresenius Environmental Bulletin 19(11a): 2616-2624
  • Seckin N, Haktanır T & Yurtal R (2011). Flood frequency analysis of Turkey using L-moments method. Hydrological Processes 25: 3499
  • Selek B & Tuncok K I (2014). Effects of climate change on surface water management of Seyhan Basin, Turkey. Environmental and Ecological Statistics 21(3): 391-409
  • Sen B, Topcu S, Giorgi F, Bi X, Kanıt E.G & Dalkılıç T (2008). Seyhan Havzasında iklim değişikliğinin tarımsal su kullanımına etkileri. TMMOB 2. Su Politikaları Kongresi 20-22 Mart 2008, Ankara
  • Shi P, Chen X, Qu S, Zhang Z & Ma J (2010). Regional frequency analysis of low flow based on l moments: case study in karst area, southwest china. Journal of Hydrologic Engineering 15(5): 370-377
  • Simsek O & Cakmak B (2010). Drought analysis for 2007-2008 agricultural year of Turkey. Journal of Tekirdag Agricultural Faculty 7(3): 99-109
  • Stedinger J R, Vogel R M & Foufoula-Georgiou E (1993). Frequency Analysis of Extreme Events. Handbook of Hydrology D. R. Maidment, ed., McGraw-Hill Book Co., Inc., New York, NY
  • Tallaksen C Y, Ngongondo C S, Xu L, Alemaw B & Chirwa T (2011). Regional frequency analysis of rainfall extremes in southern malawi using the index rainfall and l-moments approaches. Stochastic Environmental Research and Risk Assessment 25(7): 939-955
  • Thom H C S (1951). A Frequency Distribution for precipitation (abstract). Bulletin of the American Meteorological Society 32(10): 397
  • Thom H C S (1958). A Note on the Gamma Distribution. Monthly Weather Review 86: 117-122
  • Tonkaz T (2006). Spatio-temporal assessment of historical droughts using SPI with GIS in GAP Region, Turkey. Journal of Applied Sciences 6(12): 2565-2571
  • Topcu E (2013). L-Momentler ve Standart Yağış İndeksi (SYİ) yardımıyla Seyhan Havzası Kuraklık Analizi. Yüksek lisans tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana
  • Trenberth K E & Dai A (2007). Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophysical Research Letters 34: L15702
  • Türkes M (1999). Vulnerability of Turkey to desertification with respect to precipitation and aridity conditions. Turkish Journal of Engineering and Environmental Science 23: 363-380
  • Vardiman L (2008). A new theory of climate change. Acts & Facts 37(11): 10
  • Wilhite D & Glantz M R (1987). Understanding the drought phenomenon. The role of definitions, in Wilhite, David, Easterling, William and Wood, David eds, Planning for drought: Boulder, Colo. Westview Press pp. 11-27
  • WMO (2007). Global Climate Highlights in 2006. http:// www.wmo.int/pages/ (Access Date: 03.03.2014)
  • Xie H, Ringler C, Zhu T & Waqas A (2013). Droughts in Pakistan: A spatiotemporal variability analysis using the standardized precipitation index. Water International 38(5): 620-631

Drought Analysis of the Seyhan Basin by Using Standardized Precipitation Index SPI and L-moments

Yıl 2016, Cilt: 22 Sayı: 2, 196 - 215, 01.03.2016
https://doi.org/10.1501/Tarimbil_0000001381

Öz

The aim of this study is to monitor drought in the Seyhan Basin by using Standardized Precipitation Index SPI based on a long term monthly precipitation of 11 meteorological stations and secondly, to also carry out regional frequency analysis using the index flood procedure coupled with the L-moments method based on recorded precipitation data of the most drought month for each year acquired from Standardized Precipitation Index method for each station. The SPI values of each station for 3, 6, 9 and 12-month time scales were calculated. According to the results, all stations are on the boundary of drought. Research results show that the wettest station is Ulukışla and the most drought station is Karaisalı with respect to the average SPI values. According to the drought frequency values, however, the station having the highest drought occurrence frequency is the Karaisalı station, whereas the station having the lowest drought frequency is the Tufanbeyli station. Results show that the Seyhan Basin is on the boundary of drought and mildly wet. Drought occurrence frequency is 47.7%. L-moments method was used to define homogenous regions. Homogenous regions for 3 and 6-month time scales minimum precipitation series couldn’t be obtained while homogenous regions for 9-month time scale minimum precipitation series were obtained only by dividing the whole basin into two parts. The whole basin is homogenous for the 12-month time scale minimum precipitation series. The Pearson Type 3 distribution is found to be most suitable for two homogenous sub-basins regarding 9-month time scale minimum precipitation series, whereas the Generalized Normal distribution is found to be most suitable for the whole basin with respect to 12-month time scale minimum precipitation series

Kaynakça

  • Abolverdi J & Khalili D (2010). Probabilistic analysis of extreme regional meteorological droughts by L-Moments in a semi-arid environment. Theoretical and Applied Climatology 102: 351-366
  • Altın B T & Barak B (2012). Seyhan Havzasında 1970-2009 yılları arasında yağış ve hava sıcaklığı değerlerindeki değişimler ve eğilimler. Türk Coğrafya Dergisi 58: 21-34
  • Anlı S A, Apaydın H & Öztürk F (2009). Trabzon ilinde gözlenen yıllık maksimum yağışların bölgesel frekans analizi. Tarım Bilimleri Dergisi-Journal of Agricultural Sciences 15(3): 240-248
  • Anlı S A (2014). Güneydoğu anadolu bölgesinde referans bitki su tüketiminin (et0) zamansal değişimi ve rdi (keşif kuraklık indeksi) yöntemiyle meteorolojik kuraklık analizi. Tarım Bilimleri Dergisi-Journal of Agricultural Sciences 20(3): 248-260
  • Aydogan D, Kankal M & Önsoy H (2014). Regional flood frequency analysis for Çoruh Basin of Turkey with L-moments approach. Journal of Flood Risk Management doi: 10.1111/jfr3.12116
  • Blain C G (2012). Monthly values of the standardized precipitation index in the State of Sao Paulo, Brazil: Trends and spectral features under the normality assumption. Bragantia 71(1): 122-131
  • CSB (2011). Turkey’s National Climate Change Adaptation Strategy and Action Plan, T.R. Ministry of Environment and Urbanization, November 2011. Ankara (1st edition) http://www.csb.gov.tr/db/iklim/ editordosya/Adaptation_Strategy.pdf (Access Date 03.03.2014)
  • Dalrymple T (1960). Flood Frequency Methods. U. S. Geol. Survey, Water Supply Paper 1453 A, Washington, 11-51
  • Dodangeh S, Sattari M T & Seçkin N (2011). Minimum akımların L momentler yöntemi ile bölgesel frekans analizi. Tarım Bilimleri Dergisi-Journal of Agricultural Sciences 17: 43-58
  • Dubey A (2014). Regional flood frequency analysis utilizing L-moments: A case study of Narmada Basin. International Journal of Engineering Research and Applications 4(2): 155-161
  • Dutra E, Giuseppe D F, Wetterhall F & Pappenberger F (2013). Seasonal forecasts of droughts in African Basins using the standardized precipitation index. Hydrology and Earth System Sciences 17: 2359-2373
  • Edwards D C & McKee T B (1997). Characteristics of 20th century drought in the United States at multiple time scales. Climatology Report Number 97-2, Colorado State University, Fort Collins, Colorado
  • Eslamian S S & Feizi H (2006). Maximum monthly rainfall analysis using L-moments for an arid region in isfahan province, Iran. Journal of Applied Meteorology and Climatology 46: 494-503
  • Eslamian S, Hassanzadeh H, Abedi-Koupai J & Gheysari M (2012). Application of L-moments for regional frequency analysis of monthly drought indexes. Journal of Hydrologic Engineering 17(1): 32-42
  • Fang Y, Mauzerall D L, Liu J, Fiore A M & Horowitz L W H (2013). Impacts of 21st century climate change on global air pollution-related premature mortality. Climatic Change 121: 239-253
  • Fowler H J & Kilsbyc G (2003). A regional frequency analysis of United Kingdom extreme rainfall from 1961 to 2000. International Journal of Climatology 23: 1313-1334
  • Fujihara Y, Simonovic P S, Topaloğlu F, Tanaka K & Tsugihiro W (2008). An inverse modelling approach to assess the impacts of climate change in the Seyhan River Basin, Turkey. Hydrological Sciences Journal 53(6): 1121-1136
  • Gebeyehu A (1989). Regional Flood Frequency Analysis. The Royal Institute of Technology, Stockholm, Sweden, Bulletin No. TRIVA-VBI-148
  • Gingras D & Adamowski K (1994). Performance of L-moments and nonparametric flood frequency analysis. Canadian Journal of Civil Engineering 21(5): 856-862
  • Guenang M G & Kamga M F (2014). Computation of the standardized precipitation index (spi) and its use to assess drought occurrences in cameroon over recent decades. Journal of Applied Meteorology and Climatology 53: 2310-2324
  • Gurkan D (2005). Assessment of Climate Change Impacts on Surface Water Resources in Seyhan River Basin. MSc, Thesis, Hacettepe University (in Turkish, unpublished)
  • Guttman N B (1998). Comparing the palmer drought severity index and the standardized precipitation index. Journal of the American Water Resources Association 34(1): 113-121
  • Guttman N B (1999). Accepting the Standardized Precipitation İndex: A Calculation Algorithm. Journal of the American Water Resources Association 35: 311-322
  • Hosking J R M (1986). The Theory of Probability Weighted Moments. Research Rep. RC 12210, 160 pp. IBM Research Division, Yorktown Heights, NY
  • Hosking J R M (1990). L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society 52(2): 105-124
  • Hosking J R M & Wallis J R (1993). Some statistics useful in regional frequency analysis. Water Resources Research 29(2): 271-281
  • Hosking J R M & Wallis J R (1997). Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge University Press, UK
  • IPCC (2007). Intergovernmental Panel on Climate Change. http://www.ipcc.ch/ (Access Date 03.03.2014)
  • Jha S, Sehgal K V, Raghava R & Sinha M (2013). Trend of standardized precipitation index during Indian summer monsoon season in agro climatic zones of India. Earth System Dynamics Discussions 4: 429-449
  • Keskin F & Sorman A Ü (2010). Assessment of the Drought Pattern Change in Çamlıdere Basin Using SPI. BALWOİS 2010, 25-29 May Ohrid, Republic of Macedonia
  • Kömüscü A Ü (2001). An analysis of recent drought conditions in Turkey in relation to circulation patterns. Drought Network News (1994-2001). Paper 22
  • Landwehr J M, Matalas N C & Wallis J R (1979a). Probability weighted moments compared with some traditional techniques in estimating gumbel parameters and quantiles. Water Resources Research 15(5): 1055-1064
  • Landwehr J M, Matalas N C & Wallis J R (1979b). Estimation of parameters and quantiles of wakeby distributions. 1. Known lover bounds. Water Resources Research 15(6): 1361-1372
  • Landwehr J M, Matalas N C & Wallis J R (1979c). Estimation of parameters and quantiles of wakeby distributions. 1. Unknown lover bounds. Water Resources Research 15(6): 1373-1379
  • Li W, Fu R, Juarez R I N & Fernandes K (2008). Observed change of the standardized precipitation index, its potential cause and implications to future climate change in the amazon region. Philosophical Transactions of the Royal Society 363: 1767-1772
  • Lloyd-Hughes B & Saunders M A (2002). A drought climatology for Europe, International Journal of Climatology 22: 1571-1592
  • McKee T B, Doesken N J & Kleist J (1993). The Relationship of Drought Frequency and Duration to Time Scales. Reprints, 8th Conference on Applied Climatology, Anaheim, CA, USA, 179-184 pp
  • McRoberts B D & Nielsen-Gammon W J (2012). The use of a high-resolution standardized precipitation index for drought monitoring and assessment. Journal of Applied Meteorology and Climatology 51: 68-83
  • NASA (2010a). Is Current Warming Natural? http:// earthobservatory.nasa.gov/Features/ (Access Date: 03.03.2014)
  • NASA (2010b). Satellites Pinpoint Drivers of Urban Heat Islands in the Northeast. http://www.nasa.gov/topics/ earth/features/heat-island (Access Date: 03.03.2014)
  • Norbiato D, Borga M, Sangati M & Zanon F (2007). Regional frequency analysis of extreme precipitation in the Eastern Italian Alps in the August 29, 2003 flash flood. Journal of Hydrology 345: 149-166
  • Parida B P & Moalafhi D B (2008). Regional rainfall frequency analysis for botswana using l-moments and radial basis function network. Physics and Chemistry of the Earth 33: 614-620
  • Saf B (2009). Regional flood frequency analysis using l moments for the Buyuk and Kucuk Menderes river basins of Turkey. Journal of Hydrologic Engineering 14(8): 783-794
  • Seckin N & Yurtal R (2008). L-momentlere dayalı göstergesel metodu ile bölgesel taşkın frekans analizi. Ç.Ü. Fen Bilimleri Dergisi 19: 120-129
  • Seckin N, Yurtal R, Haktanır T & Doğan A (2010a). Comparison of probability weighted moments and maximum likelihood methods used in flood frequency analysis for Ceyhan River Basin. The Arabian Journal for Science and Engineering 35(1): 49-69
  • Seckin N, Yurtal R, Haktanır T & Topaloğlu F (2010b). Regional flood frequency analysis of Ceyhan River Basin in Turkey using L-moments method. Fresenius Environmental Bulletin 19(11a): 2616-2624
  • Seckin N, Haktanır T & Yurtal R (2011). Flood frequency analysis of Turkey using L-moments method. Hydrological Processes 25: 3499
  • Selek B & Tuncok K I (2014). Effects of climate change on surface water management of Seyhan Basin, Turkey. Environmental and Ecological Statistics 21(3): 391-409
  • Sen B, Topcu S, Giorgi F, Bi X, Kanıt E.G & Dalkılıç T (2008). Seyhan Havzasında iklim değişikliğinin tarımsal su kullanımına etkileri. TMMOB 2. Su Politikaları Kongresi 20-22 Mart 2008, Ankara
  • Shi P, Chen X, Qu S, Zhang Z & Ma J (2010). Regional frequency analysis of low flow based on l moments: case study in karst area, southwest china. Journal of Hydrologic Engineering 15(5): 370-377
  • Simsek O & Cakmak B (2010). Drought analysis for 2007-2008 agricultural year of Turkey. Journal of Tekirdag Agricultural Faculty 7(3): 99-109
  • Stedinger J R, Vogel R M & Foufoula-Georgiou E (1993). Frequency Analysis of Extreme Events. Handbook of Hydrology D. R. Maidment, ed., McGraw-Hill Book Co., Inc., New York, NY
  • Tallaksen C Y, Ngongondo C S, Xu L, Alemaw B & Chirwa T (2011). Regional frequency analysis of rainfall extremes in southern malawi using the index rainfall and l-moments approaches. Stochastic Environmental Research and Risk Assessment 25(7): 939-955
  • Thom H C S (1951). A Frequency Distribution for precipitation (abstract). Bulletin of the American Meteorological Society 32(10): 397
  • Thom H C S (1958). A Note on the Gamma Distribution. Monthly Weather Review 86: 117-122
  • Tonkaz T (2006). Spatio-temporal assessment of historical droughts using SPI with GIS in GAP Region, Turkey. Journal of Applied Sciences 6(12): 2565-2571
  • Topcu E (2013). L-Momentler ve Standart Yağış İndeksi (SYİ) yardımıyla Seyhan Havzası Kuraklık Analizi. Yüksek lisans tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana
  • Trenberth K E & Dai A (2007). Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophysical Research Letters 34: L15702
  • Türkes M (1999). Vulnerability of Turkey to desertification with respect to precipitation and aridity conditions. Turkish Journal of Engineering and Environmental Science 23: 363-380
  • Vardiman L (2008). A new theory of climate change. Acts & Facts 37(11): 10
  • Wilhite D & Glantz M R (1987). Understanding the drought phenomenon. The role of definitions, in Wilhite, David, Easterling, William and Wood, David eds, Planning for drought: Boulder, Colo. Westview Press pp. 11-27
  • WMO (2007). Global Climate Highlights in 2006. http:// www.wmo.int/pages/ (Access Date: 03.03.2014)
  • Xie H, Ringler C, Zhu T & Waqas A (2013). Droughts in Pakistan: A spatiotemporal variability analysis using the standardized precipitation index. Water International 38(5): 620-631
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Emre Topçu Bu kişi benim

Neslihan Seçkin Bu kişi benim

Yayımlanma Tarihi 1 Mart 2016
Gönderilme Tarihi 1 Ocak 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 22 Sayı: 2

Kaynak Göster

APA Topçu, E., & Seçkin, N. (2016). Drought Analysis of the Seyhan Basin by Using Standardized Precipitation Index SPI and L-moments. Journal of Agricultural Sciences, 22(2), 196-215. https://doi.org/10.1501/Tarimbil_0000001381

Cited By








Drought Analysis in Ceyhan Basin Using Standardized Precipitation Index
Journal of the Institute of Science and Technology
MUHAMMED ÇUHADAR
https://doi.org/10.21597/jist.544432








Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).