Research Article
BibTex RIS Cite
Year 2020, Volume: 26 Issue: 4, 479 - 487, 04.12.2020
https://doi.org/10.15832/ankutbd.561603

Abstract

References

  • Al-aghabary K, Zhu Z & Shi Q (2005). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27(12), 2101-2115.
  • Ashraf M A, Riaz M, Arif M S, Rasheed R, Iqbal M, Hussain I & Salman M (2019). The Role of Non-Enzymatic Antioxidants in Improving Abiotic Stress Tolerance in Plants. In M. Hasanuzzaman, M. Fujita, H. Oku & M. T. Islam (Eds.), Plant Tolerance to Environmental Stress: Role of Phytoprotectants (1 ed., pp. 468). Boca Raton: CRC Press.
  • Babst B A, Ferrieri R A, Gray D W, Lerdau M, Schlyer D J, Schueller M, . . . Orians C M (2005). Jasmonic acid induces rapid changes in carbon transport and partitioning in Populus. New Phytologist, 167(1), 63-72.
  • Behzadifar M, Chehrazi M & Aboutalebi A (2013). Effect of salt stress by using unconventional water on some morphological characters and ajmalicine alkaloid amount in the roots of Catharanthus roseus Cvs. Rosea and Alba. Annals of Biological Research, 4(8), 229-231.
  • Catalkaya G & Kahveci D (2019). Optimization of Enzyme Assisted Extraction of Lycopene from Industrial Tomato Waste. Separation and Purification Technology.
  • Chen C, Lu S, Chen Y, Wang Z, Niu Y & Guo Z (2009). A gamma-ray–induced dwarf mutant from seeded bermudagrass and its physiological responses to drought stress. Journal of the American Society for Horticultural Science, 134(1), 22-30.
  • Choudhari S M & Ananthanarayan L (2007). Enzyme aided extraction of lycopene from tomato tissues. Food Chemistry, 102(1), 77-81.
  • Choudhary R, Bowser T, Weckler P, Maness N & McGlynn W (2009). Rapid estimation of lycopene concentration in watermelon and tomato puree by fiber optic visible reflectance spectroscopy. Postharvest Biology and Technology, 52(1), 103-109.
  • Cuartero J & Fernández-Muñoz R (1998). Tomato and salinity. Scientia Horticulturae, 78(1-4), 83-125.
  • Czerpak R, Piotrowska A & Szulecka K (2006). Jasmonic acid affects changes in the growth and some components content in alga Chlorella vulgaris. Acta Physiologiae Plantarum, 28(3), 195-203.
  • Enteshari Shekoofeh J T (2013). The effects of methyl jasmonate and salinity on germination and seedling growth in Ocimum basilicum L. . Plant Physiology, 3(3), 749-756. doi: 10.22034/ijpp.2013.540687
  • Fontes P C R, Loures J L, Galvão J, Cardoso A A & Mantovani E C (2004). Produção e qualidade do tomate produzido em substrato, no campo e em ambiente protegido. Horticultura Brasileira, 22(3), 614-619.
  • Fugate K K, Lafta A M, Eide J D, Li G, Lulai E C, Olson L L, . . . Finger F L (2018). Methyl jasmonate alleviates drought stress in young sugar beet (Beta vulgaris L.) plants. Journal of Agronomy and Crop Science, 204(6), 566-576.
  • Haghighi M & Pessarakli M (2013). Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulturae, 161, 111-117. doi: 10.1016/j.scienta.2013.06.034
  • Kardoni F, Mosavi S J S, Parande S & Torbaghan M E (2013). Effect of salinity stress and silicon application on yield and component yield offaba bean (Viciafaba). International Journal of Agriculture and Crop Sciences, 6(12), 814.
  • Kim Y-H, Khan A L, Waqas M & Lee I-J (2017). Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review. Frontiers in Plant Science, 8, 510.
  • Lee S, Sohn E, Hamayun M, Yoon J & Lee I (2010). Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforestry Systems, 80(3), 333-340.
  • Maggio A, Raimondi G, Martino A & De Pascale S (2007). Salt stress response in tomato beyond the salinity tolerance threshold. Environmental and Experimental Botany, 59(3), 276-282.
  • Manan A, Ayyub C M, Pervez M A & Ahmad R (2016). Methyl Jasmonate Brings About Resistance against Salinity Stressed Tomato Plants by Altering Biochemical and Physiological Processes. Pakistan Journal of Agricultural Sciences, 53(1), 35-41. doi: Doi 10.21162/Pakjas/16.4441
  • Marodin J C, Resende J T, Morales R G, Faria M V, Trevisam A R, Figueiredo A S & Dias D M (2016). Tomato post-harvest durability and physicochemical quality depending on silicon sources and doses. Horticultura Brasileira, 34(3), 361-366.
  • Maxwell K & Johnson G N (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345), 659-668.
  • Mazorra L M, Nunez M, Hechavarria M, Coll F & Sánchez-Blanco M J (2002). Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures. Biologia Plantarum, 45(4), 593-596.
  • Morales F, Abadía A, Gómez‐Aparisi J & Abadía J (1992). Effects of combined NaCl and CaCl2 salinity on photosynthetic parameters of barley grown in nutrient solution. Physiologia Plantarum, 86(3), 419-426.
  • Mosavi M, Khorshidi M, Masoudian N & Hokmabadi H (2018). Study of some physiological characteristics of potato tissue under salinity stress. International Journal of Farming and Allied Sciences, 7(1), 1-5.
  • Panhwar M, Keerio M & Robert M (2017). Evaluating changes in wheat genotypes caused by hydrogen peroxide during seed treatment and their involvement in salt tolerance. Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences, 33(1), 23-36.
  • Pascale S D, Maggio A, Fogliano V, Ambrosino P & Ritieni A (2001). Irrigation with saline water improves carotenoids content and antioxidant activity of tomato. The Journal of Horticultural Science and Biotechnology, 76(4), 447-453.
  • Pedranzani H, Racagni G, Alemano S, Miersch O, Ramírez I, Peña-Cortés H, . . . Abdala G (2003). Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regulation, 41(2), 149-158. doi: 10.1023/A:1027311319940
  • Puyang X, An M, Han L & Zhang X (2015). Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars. Ecotoxicology and Environmental Safety, 117, 96-106.
  • Qiu Z, Guo J, Zhu A, Zhang L & Zhang M (2014). Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicology and Environmental Safety, 104, 202-208. doi: 10.1016/j.ecoenv.2014.03.014
  • Rochaix J-D (2011). Assembly of the photosynthetic apparatus. Plant Physiology, 155(4), 1493-1500.
  • Sheikh-Mohamadi M-H, Etemadi N, Nikbakht A, Farajpour M, Arab M & Majidi M M (2017). Screening and selection of twenty Iranian wheatgrass genotypes for tolerance to salinity stress during seed germination and seedling growth stage. HortScience, 52(8), 1125-1134.
  • Sheikh-Mohamadi M-H, Etemadi N, Nikbakht A, Farajpour M, Arab M & Majidi M M (2018). Wheatgrass germination and seedling growth under osmotic stress. Agronomy Journal.
  • Soylemezoglu G, Demir K, Inal A & Gunes A (2009). Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Scientia Horticulturae, 123(2), 240-246.
  • Srinieng K, Saisavoey T & Karnchanatat A (2015). Effect of salinity stress on antioxidative enzyme activities in tomato cultured in vitro. Pakistan Journal of Botany, 47(1), 1-10.
  • Stamatakis A, Papadantonakis N, Savvas D, Lydakis-Simantiris N & Kefalas P (2003). Effects of silicon and salinity on fruit yield and quality of tomato grown hydroponically. In: International Symposium on Managing Greenhouse Crops in Saline Environment 609.
  • Tsonev T D, Lazova G N, Stoinova Z G & Popova L P (1998). A possible role for jasmonic acid in adaptation of barley seedlings to salinity stress. Journal of Plant Growth Regulation, 17(3), 153-159. doi: Doi 10.1007/Pl00007029
  • Ueda J & Saniewski M (2006). Methyl jasmonate-induced stimulation of chlorophyll formation in the basal part of tulip bulbs kept under natural light conditions. Journal of fruit and ornamental plant research, 14, 199.
  • Wang Y, Gao L, Wang Q & Zuo J (2019). Low temperature conditioning combined with methyl jasmonate can reduce chilling injury in bell pepper. Scientia Horticulturae, 243, 434-439.
  • Wickens T D & Keppel G (2004). Design and analysis: A researcher's handbook: Pearson Prentice-Hall.
  • Wu Y, Liao W, Dawuda M M, Hu L & Yu J (2019). 5-Aminolevulinic acid (ALA) biosynthetic and metabolic pathways and its role in higher plants: a review. Plant Growth Regulation, 87(2), 357-374.
  • Xie Z, Duan L, Tian X, Wang B, Eneji A E & Li Z (2008). Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity. Journal of Plant Physiology, 165(4), 375-384.
  • Yoon J Y, Hamayun M, Lee S-K & Lee I-J (2009). Methyl jasmonate alleviated salinity stress in soybean. Journal of Crop Science and Biotechnology, 12(2), 63-68.
  • Zhu Y & Gong H (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development, 34(2), 455-472.

The Effect of Sodium Silicate and Methyl Jasmonate on Pigments and Antioxidant Activity of Tomato (Solanum lycopersicum L.) Under Salinity Stress

Year 2020, Volume: 26 Issue: 4, 479 - 487, 04.12.2020
https://doi.org/10.15832/ankutbd.561603

Abstract

The present study aimed to investigate the effects of sodium silicate (Si) and methyl jasmonate (MeJA) on the pigments and antioxidant activity of tomato, under salinity stress. For this purpose, completely randomized factorial design with three factors including three levels of salinity (0, 4 and 6 dS m-1), Si (0, 4 and 8 mM) and MeJA (0, 5 and 7.5 μM), and three replications was used. The present study displayed that the increase in salinity level reduced chlorophyll index, fluorescence, and vitamin C; however, the catalase (CAT) and ascorbate peroxidase (APX) activities increased. MeJA and Si enhanced the chlorophyll index and vitamin C at different salinity levels, respectively. CAT and APX decreased when the salinized plants were treated with MeJA and Si. MeJA and Si may act to mitigate the adverse effect of salinity stress by reducing the H2O2 production. Finally, it can be concluded that MeJA and Si partially offset the adverse impacts of salinity stress. 

References

  • Al-aghabary K, Zhu Z & Shi Q (2005). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27(12), 2101-2115.
  • Ashraf M A, Riaz M, Arif M S, Rasheed R, Iqbal M, Hussain I & Salman M (2019). The Role of Non-Enzymatic Antioxidants in Improving Abiotic Stress Tolerance in Plants. In M. Hasanuzzaman, M. Fujita, H. Oku & M. T. Islam (Eds.), Plant Tolerance to Environmental Stress: Role of Phytoprotectants (1 ed., pp. 468). Boca Raton: CRC Press.
  • Babst B A, Ferrieri R A, Gray D W, Lerdau M, Schlyer D J, Schueller M, . . . Orians C M (2005). Jasmonic acid induces rapid changes in carbon transport and partitioning in Populus. New Phytologist, 167(1), 63-72.
  • Behzadifar M, Chehrazi M & Aboutalebi A (2013). Effect of salt stress by using unconventional water on some morphological characters and ajmalicine alkaloid amount in the roots of Catharanthus roseus Cvs. Rosea and Alba. Annals of Biological Research, 4(8), 229-231.
  • Catalkaya G & Kahveci D (2019). Optimization of Enzyme Assisted Extraction of Lycopene from Industrial Tomato Waste. Separation and Purification Technology.
  • Chen C, Lu S, Chen Y, Wang Z, Niu Y & Guo Z (2009). A gamma-ray–induced dwarf mutant from seeded bermudagrass and its physiological responses to drought stress. Journal of the American Society for Horticultural Science, 134(1), 22-30.
  • Choudhari S M & Ananthanarayan L (2007). Enzyme aided extraction of lycopene from tomato tissues. Food Chemistry, 102(1), 77-81.
  • Choudhary R, Bowser T, Weckler P, Maness N & McGlynn W (2009). Rapid estimation of lycopene concentration in watermelon and tomato puree by fiber optic visible reflectance spectroscopy. Postharvest Biology and Technology, 52(1), 103-109.
  • Cuartero J & Fernández-Muñoz R (1998). Tomato and salinity. Scientia Horticulturae, 78(1-4), 83-125.
  • Czerpak R, Piotrowska A & Szulecka K (2006). Jasmonic acid affects changes in the growth and some components content in alga Chlorella vulgaris. Acta Physiologiae Plantarum, 28(3), 195-203.
  • Enteshari Shekoofeh J T (2013). The effects of methyl jasmonate and salinity on germination and seedling growth in Ocimum basilicum L. . Plant Physiology, 3(3), 749-756. doi: 10.22034/ijpp.2013.540687
  • Fontes P C R, Loures J L, Galvão J, Cardoso A A & Mantovani E C (2004). Produção e qualidade do tomate produzido em substrato, no campo e em ambiente protegido. Horticultura Brasileira, 22(3), 614-619.
  • Fugate K K, Lafta A M, Eide J D, Li G, Lulai E C, Olson L L, . . . Finger F L (2018). Methyl jasmonate alleviates drought stress in young sugar beet (Beta vulgaris L.) plants. Journal of Agronomy and Crop Science, 204(6), 566-576.
  • Haghighi M & Pessarakli M (2013). Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulturae, 161, 111-117. doi: 10.1016/j.scienta.2013.06.034
  • Kardoni F, Mosavi S J S, Parande S & Torbaghan M E (2013). Effect of salinity stress and silicon application on yield and component yield offaba bean (Viciafaba). International Journal of Agriculture and Crop Sciences, 6(12), 814.
  • Kim Y-H, Khan A L, Waqas M & Lee I-J (2017). Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review. Frontiers in Plant Science, 8, 510.
  • Lee S, Sohn E, Hamayun M, Yoon J & Lee I (2010). Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforestry Systems, 80(3), 333-340.
  • Maggio A, Raimondi G, Martino A & De Pascale S (2007). Salt stress response in tomato beyond the salinity tolerance threshold. Environmental and Experimental Botany, 59(3), 276-282.
  • Manan A, Ayyub C M, Pervez M A & Ahmad R (2016). Methyl Jasmonate Brings About Resistance against Salinity Stressed Tomato Plants by Altering Biochemical and Physiological Processes. Pakistan Journal of Agricultural Sciences, 53(1), 35-41. doi: Doi 10.21162/Pakjas/16.4441
  • Marodin J C, Resende J T, Morales R G, Faria M V, Trevisam A R, Figueiredo A S & Dias D M (2016). Tomato post-harvest durability and physicochemical quality depending on silicon sources and doses. Horticultura Brasileira, 34(3), 361-366.
  • Maxwell K & Johnson G N (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345), 659-668.
  • Mazorra L M, Nunez M, Hechavarria M, Coll F & Sánchez-Blanco M J (2002). Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures. Biologia Plantarum, 45(4), 593-596.
  • Morales F, Abadía A, Gómez‐Aparisi J & Abadía J (1992). Effects of combined NaCl and CaCl2 salinity on photosynthetic parameters of barley grown in nutrient solution. Physiologia Plantarum, 86(3), 419-426.
  • Mosavi M, Khorshidi M, Masoudian N & Hokmabadi H (2018). Study of some physiological characteristics of potato tissue under salinity stress. International Journal of Farming and Allied Sciences, 7(1), 1-5.
  • Panhwar M, Keerio M & Robert M (2017). Evaluating changes in wheat genotypes caused by hydrogen peroxide during seed treatment and their involvement in salt tolerance. Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences, 33(1), 23-36.
  • Pascale S D, Maggio A, Fogliano V, Ambrosino P & Ritieni A (2001). Irrigation with saline water improves carotenoids content and antioxidant activity of tomato. The Journal of Horticultural Science and Biotechnology, 76(4), 447-453.
  • Pedranzani H, Racagni G, Alemano S, Miersch O, Ramírez I, Peña-Cortés H, . . . Abdala G (2003). Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regulation, 41(2), 149-158. doi: 10.1023/A:1027311319940
  • Puyang X, An M, Han L & Zhang X (2015). Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars. Ecotoxicology and Environmental Safety, 117, 96-106.
  • Qiu Z, Guo J, Zhu A, Zhang L & Zhang M (2014). Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicology and Environmental Safety, 104, 202-208. doi: 10.1016/j.ecoenv.2014.03.014
  • Rochaix J-D (2011). Assembly of the photosynthetic apparatus. Plant Physiology, 155(4), 1493-1500.
  • Sheikh-Mohamadi M-H, Etemadi N, Nikbakht A, Farajpour M, Arab M & Majidi M M (2017). Screening and selection of twenty Iranian wheatgrass genotypes for tolerance to salinity stress during seed germination and seedling growth stage. HortScience, 52(8), 1125-1134.
  • Sheikh-Mohamadi M-H, Etemadi N, Nikbakht A, Farajpour M, Arab M & Majidi M M (2018). Wheatgrass germination and seedling growth under osmotic stress. Agronomy Journal.
  • Soylemezoglu G, Demir K, Inal A & Gunes A (2009). Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Scientia Horticulturae, 123(2), 240-246.
  • Srinieng K, Saisavoey T & Karnchanatat A (2015). Effect of salinity stress on antioxidative enzyme activities in tomato cultured in vitro. Pakistan Journal of Botany, 47(1), 1-10.
  • Stamatakis A, Papadantonakis N, Savvas D, Lydakis-Simantiris N & Kefalas P (2003). Effects of silicon and salinity on fruit yield and quality of tomato grown hydroponically. In: International Symposium on Managing Greenhouse Crops in Saline Environment 609.
  • Tsonev T D, Lazova G N, Stoinova Z G & Popova L P (1998). A possible role for jasmonic acid in adaptation of barley seedlings to salinity stress. Journal of Plant Growth Regulation, 17(3), 153-159. doi: Doi 10.1007/Pl00007029
  • Ueda J & Saniewski M (2006). Methyl jasmonate-induced stimulation of chlorophyll formation in the basal part of tulip bulbs kept under natural light conditions. Journal of fruit and ornamental plant research, 14, 199.
  • Wang Y, Gao L, Wang Q & Zuo J (2019). Low temperature conditioning combined with methyl jasmonate can reduce chilling injury in bell pepper. Scientia Horticulturae, 243, 434-439.
  • Wickens T D & Keppel G (2004). Design and analysis: A researcher's handbook: Pearson Prentice-Hall.
  • Wu Y, Liao W, Dawuda M M, Hu L & Yu J (2019). 5-Aminolevulinic acid (ALA) biosynthetic and metabolic pathways and its role in higher plants: a review. Plant Growth Regulation, 87(2), 357-374.
  • Xie Z, Duan L, Tian X, Wang B, Eneji A E & Li Z (2008). Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity. Journal of Plant Physiology, 165(4), 375-384.
  • Yoon J Y, Hamayun M, Lee S-K & Lee I-J (2009). Methyl jasmonate alleviated salinity stress in soybean. Journal of Crop Science and Biotechnology, 12(2), 63-68.
  • Zhu Y & Gong H (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development, 34(2), 455-472.
There are 43 citations in total.

Details

Primary Language English
Journal Section Makaleler
Authors

Mohammad Javad Arvin 0000-0002-3661-6902

Publication Date December 4, 2020
Submission Date May 8, 2019
Acceptance Date August 1, 2019
Published in Issue Year 2020 Volume: 26 Issue: 4

Cite

APA Arvin, M. J. (2020). The Effect of Sodium Silicate and Methyl Jasmonate on Pigments and Antioxidant Activity of Tomato (Solanum lycopersicum L.) Under Salinity Stress. Journal of Agricultural Sciences, 26(4), 479-487. https://doi.org/10.15832/ankutbd.561603

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).