Research Article
BibTex RIS Cite
Year 2022, Volume: 28 Issue: 2, 251 - 258, 25.04.2022
https://doi.org/10.15832/ankutbd.870528

Abstract

References

  • Anonymous (2021). Tarım ve Orman Bakanlığı Kayısı Araştırma Enstitüsü Müdürlüğü. Retrieved in January, 15, 2021 from https://arastirma.tarimorman.gov.tr/kayisi/Menu/6/Tescilli-Cesitlerimiz
  • Chase M W, Cowan R S, Hollingsworth P M & van den Berg C et al (2007). A proposal for a standardised protocol to barcode all land plants. Taxon 56(2): 295–299
  • Cheng T, Xu C, Lei L, Li C, Zhang Y & Zhou S (2016). Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Molecular Ecology Resources 16(1): 138-149
  • Dong W, Xu C, Li C et al (2015). ycf1, the most promising plastid DNA barcode of land plants. Scientific Reports 5: 8348
  • Ercisli S (2004). A short review of the fruit germplasm resources of Turkey. Genetic Resources and Accessed on Crop Evolution 51: 419-435
  • FAOSTAT (2020). Apricot production. Retrieved in December, 12, 2020 from http://www.fao.org/faostat/en/
  • Ganopoulos I, Madesis P & Tsaftaris A (2012). Universal ITS2 barcoding DNA region coupled with high-resolution melting (HRM) analysis for seed authentication and adulteration testing in leguminous forage and pasture species. Plant Molecular Biology Reporter 30(6): 1322-1328
  • Ganopoulos I, Sakaridis I, Argiriou A, Madesis P & Tsaftaris A (2013). A novel closed-tube method based on high resolution melting (HRM) analysis for authenticity testing and quantitative detection in Greek PDO Feta cheese. Food chemistry 141(2): 835-840
  • Gao T, Chen S L (2009). Authentication of the medicinal plants in Fabaceae by DNA barcoding technique. Planta Med 75: 417-417
  • Güleryüz M, Ercisli S & Esitken A (1997). A study on characteristic features of apricot grown in Erzincan, Malatya and Igdir provinces. In XI International Symposium on Apricot Culture 488: 165-170
  • Hollingsworth P M, Graham S W & Little D P (2011). Choosing and using a plant DNA barcode. PloS one 6(5): 19254
  • Hürkan K (2020). Analysis of Various DNA Barcodes on the Turkish Protected Designation of Origin Apricot “Iğdır Kayısısı”(Prunus armeniaca cv. Şalak). Turkish Journal of Agriculture-Food Science and Technology 8(9): 1982-1987
  • Kress W J, Wurdack K J, Zimmer E A, Weigt L A, Janzen D H (2005). Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America 102: 8369-8374
  • Kress W J & Erickson D L (2007). A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS one 2(6): 508
  • Kumar S, Stecher G, Li M, Knyaz C & Tamura K (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547-1549
  • Li D Z, Gao L M, Li H T et al (2011). Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proceedings of the National Academy of Sciences of the United States of America 108: 19641- 19646
  • Li J, Song M, Xiong C, Zhao B & Sun W (2016). Application of barcode high-resolution melting for rapid authentication of the medicinal plant Psammosilene tunicoides. Biotechnology & Biotechnological Equipment 30(4): 790-796
  • Hershkovitz M A, Lewis L A (1996). Deep-level diagnostic value of the rDNA-ITS region., Molecular Biology and Evolution 13(9): 1276-1295 doi.org/10.1093/oxfordjournals.molbev.a025693
  • Madesis P, Ganopoulos I, Anagnostis A & Tsaftaris A (2012). The application of Bar-HRM (Barcode DNA-High Resolution Melting) analysis for authenticity testing and quantitative detection of bean crops (Leguminosae) without prior DNA purification. Food Control 25(2): 576-582
  • Mehlenbacher S A, Cociu V & Hough F L (1991). Apricots (Prunus). Genetic Resources of Temperate Fruit and Nut Crops 290: 65-110
  • Mishra P, Shukla A K & Sundaresan V (2018). Candidate DNA barcode tags combined with high resolution melting (Bar-HRM) curve analysis for authentication of Senna alexandrina Mill. with Validation in Crude Drugs. Frontiers in plant science 9: 283
  • Pereira L, Gomes S, Barrias S, Fernandes J R & Martins L P (2018). Applying high-resolution melting (HRM) technology to olive oil and wine authenticity. Food Research International 103: 170-181
  • Reed G H & Wittwer C T (2004). Sensitivity and specificity of single-nucleotide polymorphism scanning by high- resolution melting analysis. Clinical Chemistry 50: 1748-1754
  • Reja V, Kwok A, Stone G, Yang L, Missel A, Menzel C, et al (2010). ScreenClust: Advanced statistical software for supervised and unsupervised high resolution melting (HRM) analysis. Methods 50: 10-14
  • Shi R, Xiong X, Huang M, Xu W, Li Y, Cao M & Xiong X (2020). High resolution melting (HRM) analysis of a 12S rRNA mini barcode as a novel approach for codfish species authentication in processed fish products. European Food Research and Technology 1-9
  • Song M, Li J, Xiong C, Liu H & Liang J (2016). Applying high-resolution melting (HRM) technology to identify five commonly used Artemisia species. Scientific reports 6(1): 1-7
  • Sun W, Yan S, Li J, Xiong C, Shi Y, Wu L & Chen S (2017). Study of commercially available Lobelia chinensis products using Bar-HRM technology. Frontiers in plant science 8: 351
  • Thongkhao K, Tungphatthong C, Phadungcharoen T & Sukrong S (2020). The use of plant DNA barcoding coupled with HRM analysis to differentiate edible vegetables from poisonous plants for food safety. Food Control 109: 106896
  • Won H & Renner S S (2005). The internal transcribed spacer of nuclear ribosomal DNA in the gymnosperm Gnetum. Molecular Phylogenetics and Evolution 36(3): 581-597
  • Xin T Y et al (2013). Super food Lycium barbarum (Solanaceae) traceability via an internal transcribed spacer 2 barcode. Food Research International 54: 1699-1704
  • Zhou L, Wang L, Palais R, Pryor R & Wittwer C T (2005). High-resolution DNA melting analysis for simultaneous mutation scanning and genotyping in solution. Clinical Chemistry 51(10): 1770-1777

Employing Barcode High-Resolution Melting Technique for Authentication of Apricot Cultivars

Year 2022, Volume: 28 Issue: 2, 251 - 258, 25.04.2022
https://doi.org/10.15832/ankutbd.870528

Abstract

Fast, accurate and affordable identification of food products is important to ensure authenticity and safety. There are various apricot (Prunus armeniaca L.) cultivars are being produced in Turkey. Each cultivar differs in quality and purpose of use. In this paper, we aimed to develop an easy and reliable method, Barcode High-Resolution Melting (Bar-HRM), to distinguish apricot cultivars. We designed and tested novel Bar-HRM primer sets HRM-ITS1 and HRM-ITS2, targeting the most popular barcoding region ITS1 and ITS2, specific to apricot cultivars. According to the results, HRM analysis distinguished 31 cultivars of 35 for ITS1, and 35 for ITS2. We recommend using ITS2 barcode region, amplified with using HRM-ITS2 primer set, for Bar-HRM analysis of different apricot cultivars.

Thanks

We thank Cemil Ernim (Administrative and Technical Coordinator of Republic of Turkey Ministry of Agriculture and Forestry Apricot Research Institute) for sharing the apricot collection and anonymous referees for improvement of the manuscript.

References

  • Anonymous (2021). Tarım ve Orman Bakanlığı Kayısı Araştırma Enstitüsü Müdürlüğü. Retrieved in January, 15, 2021 from https://arastirma.tarimorman.gov.tr/kayisi/Menu/6/Tescilli-Cesitlerimiz
  • Chase M W, Cowan R S, Hollingsworth P M & van den Berg C et al (2007). A proposal for a standardised protocol to barcode all land plants. Taxon 56(2): 295–299
  • Cheng T, Xu C, Lei L, Li C, Zhang Y & Zhou S (2016). Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Molecular Ecology Resources 16(1): 138-149
  • Dong W, Xu C, Li C et al (2015). ycf1, the most promising plastid DNA barcode of land plants. Scientific Reports 5: 8348
  • Ercisli S (2004). A short review of the fruit germplasm resources of Turkey. Genetic Resources and Accessed on Crop Evolution 51: 419-435
  • FAOSTAT (2020). Apricot production. Retrieved in December, 12, 2020 from http://www.fao.org/faostat/en/
  • Ganopoulos I, Madesis P & Tsaftaris A (2012). Universal ITS2 barcoding DNA region coupled with high-resolution melting (HRM) analysis for seed authentication and adulteration testing in leguminous forage and pasture species. Plant Molecular Biology Reporter 30(6): 1322-1328
  • Ganopoulos I, Sakaridis I, Argiriou A, Madesis P & Tsaftaris A (2013). A novel closed-tube method based on high resolution melting (HRM) analysis for authenticity testing and quantitative detection in Greek PDO Feta cheese. Food chemistry 141(2): 835-840
  • Gao T, Chen S L (2009). Authentication of the medicinal plants in Fabaceae by DNA barcoding technique. Planta Med 75: 417-417
  • Güleryüz M, Ercisli S & Esitken A (1997). A study on characteristic features of apricot grown in Erzincan, Malatya and Igdir provinces. In XI International Symposium on Apricot Culture 488: 165-170
  • Hollingsworth P M, Graham S W & Little D P (2011). Choosing and using a plant DNA barcode. PloS one 6(5): 19254
  • Hürkan K (2020). Analysis of Various DNA Barcodes on the Turkish Protected Designation of Origin Apricot “Iğdır Kayısısı”(Prunus armeniaca cv. Şalak). Turkish Journal of Agriculture-Food Science and Technology 8(9): 1982-1987
  • Kress W J, Wurdack K J, Zimmer E A, Weigt L A, Janzen D H (2005). Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America 102: 8369-8374
  • Kress W J & Erickson D L (2007). A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS one 2(6): 508
  • Kumar S, Stecher G, Li M, Knyaz C & Tamura K (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547-1549
  • Li D Z, Gao L M, Li H T et al (2011). Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proceedings of the National Academy of Sciences of the United States of America 108: 19641- 19646
  • Li J, Song M, Xiong C, Zhao B & Sun W (2016). Application of barcode high-resolution melting for rapid authentication of the medicinal plant Psammosilene tunicoides. Biotechnology & Biotechnological Equipment 30(4): 790-796
  • Hershkovitz M A, Lewis L A (1996). Deep-level diagnostic value of the rDNA-ITS region., Molecular Biology and Evolution 13(9): 1276-1295 doi.org/10.1093/oxfordjournals.molbev.a025693
  • Madesis P, Ganopoulos I, Anagnostis A & Tsaftaris A (2012). The application of Bar-HRM (Barcode DNA-High Resolution Melting) analysis for authenticity testing and quantitative detection of bean crops (Leguminosae) without prior DNA purification. Food Control 25(2): 576-582
  • Mehlenbacher S A, Cociu V & Hough F L (1991). Apricots (Prunus). Genetic Resources of Temperate Fruit and Nut Crops 290: 65-110
  • Mishra P, Shukla A K & Sundaresan V (2018). Candidate DNA barcode tags combined with high resolution melting (Bar-HRM) curve analysis for authentication of Senna alexandrina Mill. with Validation in Crude Drugs. Frontiers in plant science 9: 283
  • Pereira L, Gomes S, Barrias S, Fernandes J R & Martins L P (2018). Applying high-resolution melting (HRM) technology to olive oil and wine authenticity. Food Research International 103: 170-181
  • Reed G H & Wittwer C T (2004). Sensitivity and specificity of single-nucleotide polymorphism scanning by high- resolution melting analysis. Clinical Chemistry 50: 1748-1754
  • Reja V, Kwok A, Stone G, Yang L, Missel A, Menzel C, et al (2010). ScreenClust: Advanced statistical software for supervised and unsupervised high resolution melting (HRM) analysis. Methods 50: 10-14
  • Shi R, Xiong X, Huang M, Xu W, Li Y, Cao M & Xiong X (2020). High resolution melting (HRM) analysis of a 12S rRNA mini barcode as a novel approach for codfish species authentication in processed fish products. European Food Research and Technology 1-9
  • Song M, Li J, Xiong C, Liu H & Liang J (2016). Applying high-resolution melting (HRM) technology to identify five commonly used Artemisia species. Scientific reports 6(1): 1-7
  • Sun W, Yan S, Li J, Xiong C, Shi Y, Wu L & Chen S (2017). Study of commercially available Lobelia chinensis products using Bar-HRM technology. Frontiers in plant science 8: 351
  • Thongkhao K, Tungphatthong C, Phadungcharoen T & Sukrong S (2020). The use of plant DNA barcoding coupled with HRM analysis to differentiate edible vegetables from poisonous plants for food safety. Food Control 109: 106896
  • Won H & Renner S S (2005). The internal transcribed spacer of nuclear ribosomal DNA in the gymnosperm Gnetum. Molecular Phylogenetics and Evolution 36(3): 581-597
  • Xin T Y et al (2013). Super food Lycium barbarum (Solanaceae) traceability via an internal transcribed spacer 2 barcode. Food Research International 54: 1699-1704
  • Zhou L, Wang L, Palais R, Pryor R & Wittwer C T (2005). High-resolution DNA melting analysis for simultaneous mutation scanning and genotyping in solution. Clinical Chemistry 51(10): 1770-1777
There are 31 citations in total.

Details

Primary Language English
Journal Section Makaleler
Authors

Kaan Hürkan 0000-0001-5330-7442

Publication Date April 25, 2022
Submission Date January 29, 2021
Acceptance Date May 12, 2021
Published in Issue Year 2022 Volume: 28 Issue: 2

Cite

APA Hürkan, K. (2022). Employing Barcode High-Resolution Melting Technique for Authentication of Apricot Cultivars. Journal of Agricultural Sciences, 28(2), 251-258. https://doi.org/10.15832/ankutbd.870528

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).