Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 28 Sayı: 3, 457 - 472, 05.09.2022
https://doi.org/10.15832/ankutbd.915999

Öz

Kaynakça

  • Bahl S., Tuteja R. K. (1991) Ratio and product type exponential estimators. Journal of Information and Optimization Sciences 12(1): 159-164.
  • Dansawad N. (2019) A Class of Exponential Estimator to Estimate the Population Mean in the Presence of Non-Response. Naresuan University Journal: Science and Technology (NUJST) 27(4): 20-26.
  • Hansen M. H. & Hurwitz W. N. (1946) The problem of non-response in sample surveys. Journal of the American Statistical Association 41(236): 517-529, DOI: 10.1080/01621459.1946.10501894
  • Khare B. B. & Sinha R. R. (2009) On class of estimators for population mean using multi-auxiliary characters in the presence of non-response. Statistics in Transition 10(1): 3-14.
  • Khare B. B. & Srivastava S. (1993) Estimation of population mean using auxiliary character in presence of non-response. National Academy Science Letters, India 16: 111-114.
  • Kumar S. (2013) Improved exponential estimator for estimating the population mean in the presence of non-response. Communications for Statistical Applications and Methods 20(5): 357-366.
  • Kumar S. & Bhougal S. (2011) Estimation of the population mean in presence of non-response. Communications for Statistical Applications and Methods 18(4): 537-548.
  • Kumar K. & Kumar M. (2017) Improved exponential ratio and product type estimators for population mean in the presence of nonresponse. Bulletin of Mathematics and Statistics Research 5(2): 68-76.
  • Pal S. K. & Singh H. P. (2016) Finite population mean estimation through a two-parameter ratio estimator using auxiliary information in presence of non-response. Journal of Applied Mathematics, Statistics and Informatics 12(2): 5-39.
  • Pal S. K. & Singh H. P. (2017) A class of ratio-cum-ratio-type exponential estimators for population mean with sub sampling the non-respondents. Jordan Journal of Mathematics and Statistics 10(1): 73-94.
  • Pal S. K. & Singh H. P. (2018) Estimation of finite population mean using auxiliary information in presence of non-response. Communications in Statistics-Simulation and Computation 47(1): 143-165.
  • Rao P. S. R. S. (1986) Ratio estimation with sub sampling the non-respondents. Survey Methodology 12: 217–230.
  • Riaz S., Nazeer A., Abbasi J. & Qamar S. (2020) On the generalized class of estimators for estimation of finite population mean in the presence of non-response problem. Journal of Prime Research in Mathematics 16(1): 52-63.
  • Solanki R. S., Singh H. P. & Rathour A. (2012) An alternative estimator for estimating the finite population mean using auxiliary information in sample surveys. International Scholarly Research Notices 1-14, doi: 10.5402/2012/657682.
  • Singh R., Kumar M., Chaudhary M. K. & Smarandache F. (2009) Estimation of mean in presence of non-response using exponential estimator. Unpublished manuscript. arXiv preprint arXiv:0906.2462.
  • Singh R., Mishra P., Auduudu A. & Khare S. (2020) Exponential type estimator for estimating finite population mean. International Journal of Computational and Theoretical Statistics 7(1): 37-41.
  • Singh G. N. & Usman M. (2019) Efficient combination of various estimators in the presence of non-response. Communications in Statistics-Simulation and Computation 1-35, https://doi.org/10.1080/03610918.2019.1614618
  • Singh G. N. & Usman M. (2019) Ratio-to-product exponential-type estimators under non-response. Jordan Journal of Mathematics and Statistics 12(4): 593-616.
  • Unal C. & Kadilar C. (2019) Exponential type estimator for the population mean in the presence of non-response. Journal of Statistics and Management Systems 23(3): 603-615.
  • Unal C. & Kadilar C. (2019) Improved family of estimators using exponential function for the population mean in the presence of non-response. Communications in Statistics - Theory and Methods 50(1): 237-248.
  • Yadav S. K., Subramani J., Misra S., Singh L. & Mishra S. S. (2016) Improved estimation of population mean in presence of non-response using exponential estimator. International Journal of Agricultural and Statistical Sciences 12(1): 271-276.
  • Yunusa O. & Kumar S. (2014) Ratio-cum-product estimator using exponential estimator in the presence of non-response. Journal of Advanced Computing 3(1): 1-11.

Exponential Type Estimators Using Sub-Sampling Method with Applications in Agriculture

Yıl 2022, Cilt: 28 Sayı: 3, 457 - 472, 05.09.2022
https://doi.org/10.15832/ankutbd.915999

Öz

In this article, the family of exponential type estimators with the auxiliary variable is proposed in the case of non-response scheme for the purpose of obtaining the unknown population mean of the study variable. The nonresponse scheme is examined under two main cases as Case I and Case II. The bias, mean square error (MSE) and minimum MSE of the proposed family of estimators are obtained in detail for both cases. After theoretical inferences, empirical studies are carried out to show the appropriateness of the proposed family of estimators in the field of agriculture. The MSE and PRE (Percentage Relative Efficiency) values are obtained. According to the results, the proposed estimators provide more efficient results than existing estimators in the literature under the obtained conditions for both cases. We conclude that the proposed family of estimators can be applied to the agriculture data successfully. 

Kaynakça

  • Bahl S., Tuteja R. K. (1991) Ratio and product type exponential estimators. Journal of Information and Optimization Sciences 12(1): 159-164.
  • Dansawad N. (2019) A Class of Exponential Estimator to Estimate the Population Mean in the Presence of Non-Response. Naresuan University Journal: Science and Technology (NUJST) 27(4): 20-26.
  • Hansen M. H. & Hurwitz W. N. (1946) The problem of non-response in sample surveys. Journal of the American Statistical Association 41(236): 517-529, DOI: 10.1080/01621459.1946.10501894
  • Khare B. B. & Sinha R. R. (2009) On class of estimators for population mean using multi-auxiliary characters in the presence of non-response. Statistics in Transition 10(1): 3-14.
  • Khare B. B. & Srivastava S. (1993) Estimation of population mean using auxiliary character in presence of non-response. National Academy Science Letters, India 16: 111-114.
  • Kumar S. (2013) Improved exponential estimator for estimating the population mean in the presence of non-response. Communications for Statistical Applications and Methods 20(5): 357-366.
  • Kumar S. & Bhougal S. (2011) Estimation of the population mean in presence of non-response. Communications for Statistical Applications and Methods 18(4): 537-548.
  • Kumar K. & Kumar M. (2017) Improved exponential ratio and product type estimators for population mean in the presence of nonresponse. Bulletin of Mathematics and Statistics Research 5(2): 68-76.
  • Pal S. K. & Singh H. P. (2016) Finite population mean estimation through a two-parameter ratio estimator using auxiliary information in presence of non-response. Journal of Applied Mathematics, Statistics and Informatics 12(2): 5-39.
  • Pal S. K. & Singh H. P. (2017) A class of ratio-cum-ratio-type exponential estimators for population mean with sub sampling the non-respondents. Jordan Journal of Mathematics and Statistics 10(1): 73-94.
  • Pal S. K. & Singh H. P. (2018) Estimation of finite population mean using auxiliary information in presence of non-response. Communications in Statistics-Simulation and Computation 47(1): 143-165.
  • Rao P. S. R. S. (1986) Ratio estimation with sub sampling the non-respondents. Survey Methodology 12: 217–230.
  • Riaz S., Nazeer A., Abbasi J. & Qamar S. (2020) On the generalized class of estimators for estimation of finite population mean in the presence of non-response problem. Journal of Prime Research in Mathematics 16(1): 52-63.
  • Solanki R. S., Singh H. P. & Rathour A. (2012) An alternative estimator for estimating the finite population mean using auxiliary information in sample surveys. International Scholarly Research Notices 1-14, doi: 10.5402/2012/657682.
  • Singh R., Kumar M., Chaudhary M. K. & Smarandache F. (2009) Estimation of mean in presence of non-response using exponential estimator. Unpublished manuscript. arXiv preprint arXiv:0906.2462.
  • Singh R., Mishra P., Auduudu A. & Khare S. (2020) Exponential type estimator for estimating finite population mean. International Journal of Computational and Theoretical Statistics 7(1): 37-41.
  • Singh G. N. & Usman M. (2019) Efficient combination of various estimators in the presence of non-response. Communications in Statistics-Simulation and Computation 1-35, https://doi.org/10.1080/03610918.2019.1614618
  • Singh G. N. & Usman M. (2019) Ratio-to-product exponential-type estimators under non-response. Jordan Journal of Mathematics and Statistics 12(4): 593-616.
  • Unal C. & Kadilar C. (2019) Exponential type estimator for the population mean in the presence of non-response. Journal of Statistics and Management Systems 23(3): 603-615.
  • Unal C. & Kadilar C. (2019) Improved family of estimators using exponential function for the population mean in the presence of non-response. Communications in Statistics - Theory and Methods 50(1): 237-248.
  • Yadav S. K., Subramani J., Misra S., Singh L. & Mishra S. S. (2016) Improved estimation of population mean in presence of non-response using exponential estimator. International Journal of Agricultural and Statistical Sciences 12(1): 271-276.
  • Yunusa O. & Kumar S. (2014) Ratio-cum-product estimator using exponential estimator in the presence of non-response. Journal of Advanced Computing 3(1): 1-11.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Ceren Ünal 0000-0002-9357-1771

Cem Kadılar 0000-0003-4950-9660

Yayımlanma Tarihi 5 Eylül 2022
Gönderilme Tarihi 14 Nisan 2021
Kabul Tarihi 1 Eylül 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 28 Sayı: 3

Kaynak Göster

APA Ünal, C., & Kadılar, C. (2022). Exponential Type Estimators Using Sub-Sampling Method with Applications in Agriculture. Journal of Agricultural Sciences, 28(3), 457-472. https://doi.org/10.15832/ankutbd.915999

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).