Year 2025,
Volume: 31 Issue: 1, 137 - 150, 14.01.2025
Havva Eylem Polat
,
Dilara Gerdan Koc
,
Ömer Ertuğrul
,
Caner Koç
,
Kamil Ekinci
References
-
Allen A, Golden B, Taylor M, Patterson D, Henriksen D & Skuce R (2008). Evaluation of retinal imaging technology for the biometric identification of bovine animals in Northern Ireland. Livestock science 116(1-3): 42-52. DOI: https://doi.org/10.1016/j.livsci.2007.08.018
-
Andrew W, Greatwood C & Burghardt T (2017). Visual localisation and individual identification of holstein friesian cattle via deep learning. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2850-2859. Available from https://openaccess.thecvf.com/content_ICCV_2017_workshops/w41/html/Andrew_Visual_Localisation_and_ICCV_2017_paper.html
-
Awad A I (2016). From classical methods to animal biometrics: A review on cattle identification and tracking. Computers and Electronics in Agriculture, 123(2016): 423-435, https://doi.org/10.1016/j.compag.2016.03.014
-
Bhatia Y, Bajpayee A, Raghuvanshi D & Mittal H (2019). Image captioning using Google’s inception-resnet-v2 and recurrent neural network. In 2019 Twelfth International Conference on Contemporary Computing (IC3), IEEE Publish-ing, pp. 1-6. DOI: https://doi.org/10.1109/IC3.2019.8844921
-
Cai C & Li J (2013). Cattle face recognition using local binary pattern descriptor. In 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, IEEE Publishing pp. 1-4. DOI: https://doi.org/10.1109/APSIPA.2013.6694369
-
Caron M, Touvron H, Misra I, Jégou H, Mairal J, Bojanowski P & Joulin A (2021). Emerging properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9650-9660. DOI: https://doi.org/10.48550/arXiv.2104.14294
-
Chen X, Yang T, Mai K, Liu C, Xiong J, Kuan Y & Gao Y (2022). Holstein Cattle Face Re-Identification Unifying Glob-al and Part Feature Deep Network with Attention Mechanism. Animals, 12(8), DOI: https://doi.org/10.3390/ani12081047
DeVries T & Taylor G W (2017). Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552. DOI: https://doi.org/10.48550/arXiv.1708.04552
-
Doersch C, Gupta A & Efros A A (2015). Unsupervised visual representation learning by context prediction. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1422-1430. Available from https://www.cv-foundation.org/openaccess/content_iccv_2015/html/Doersch_Unsupervised_Visual_Representation_ICCV_2015_paper.html
Džermeikaitė K, Bačėninaitė D & Antanaitis R (2023). Innovations in Cattle Farming: Application of Innovative Technologies and Sensors in the Diagnosis of Diseases. Animals, 13(5): 780
-
Fosgate G T, Adesiyun A A & Hird D W (2006). Ear-tag retention and identification methods for extensively managed water buffalo (Bubalus bubalis) in Trinidad. Preventive veterinary medicine, 73(4): 287-296. DOI: https://doi.org/10.1016/j.prevetmed.2005.09.006
-
Gerdan Koc D, Koc C &Vatandas M (2023). Diagnosis of tomato plant diseases using pre-trained architectures and a proposed convolutional neural network model. Journal of Agricultural Sciences (Tarim Bilimleri Dergisi) 29(2): 627-638. doi.org/10.15832/ankutbd.957265
-
Grill J B, Strub F, Altché F, Tallec C, Richemond P, Buchatskaya E & Valko M (2020). Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural information processing systems, 33, pp: 21271-21284. ISBN: 9781713829546. Available from https://proceedings.neurips.cc/paper/2020/hash/f3ada80d5c4ee70142b17b8192b2958e-Abstract.html
-
Guo S S, Lee K H, Chang L, Tseng C D, Sie S J, Lin G Z & Lee T F (2022). Development of an Automated Body Temperature Detection Platform for Face Recognition in Cattle with YOLO V3-Tiny Deep Learning and Infrared Thermal Imaging. Applied Sciences, 12(8), DOI: https://doi.org/10.3390/app12084036
-
Hansen M F, Smith M L, Smith L N, Salter M G, Baxter E M, Farish M & Grieve B (2018). Towards on-farm pig face recognition using convolutional neural networks. Computers in Industry 98: 145-152
-
Kaixuan Z & Dongjian H (2015). Recognition of individual dairy cattle based on convolutional neural networks. Transactions of the Chinese Society of Agricultural Engineering, 31(5): 181-187. Available from https://www.cabdirect.org/cabdirect/abstract/20153218172
-
Kang X, Zhang X D & Liu G (2020). Accurate detection of lameness in dairy cattle with computer vision: A new and individualized detection strategy based on the analysis of the supporting phase. Journal of dairy science, 103 (11): 10628-10638. DOI: https://doi.org/10.3168/jds.2020-18288
-
Khosla C & Saini B S (2020). Enhancing performance of deep learning models with different data augmentation techniques: A survey. In 2020 International Conference on Intelligent Engineering and Management (ICIEM), IEEE, pp. 79-85, DOI: https://doi.org/10.1109/ICIEM48762.2020.9160048
-
Kumar S, Pandey A, Satwik K S R, Kumar S, Singh S K, Singh A K &Mohan A (2018). Deep learning framework for recognition of cattle using muzzle point image pattern. Measurement, 116 (2018), pp: 1-17, DOI: https://doi.org/10.1016/j.measurement.2017.10.064
-
Kumar S, Singh S K, Dutta T & Gupta H P (2016). A fast cattle recognition system using smart devices. MM ‘16: Proceedings of the 24th ACM international conference on Multimedia, October 2016, pp: 742–743, DOI: https://doi.org/10.1145/2964284.2973829
-
Kumar S, Singh S K, Singh R & Singh A K (2017). Recognition of Cattle Using Face Images. In: Animal Biometrics. Springer, Singapore. DOI: https://doi.org/10.1007/978-981-10-7956-6_3
-
Kusakunniran W & Chaiviroonjaroen T (2018). Automatic cattle identification based on multi-channel lbp on muzzle images. In 2018 International Conference on Sustainable Information Engineering and Technology (SIET), IEEE Publishing, pp:1-5. DOI: https://doi.org/10.1109/SIET.2018.8693161
-
Li G, Erickson G E & Xiong Y (2022). Individual Beef Cattle Identification Using Muzzle Images and Deep Learning Techniques. Animals, 12(11), DOI: https://doi.org/10.3390/ani12111453
-
Li Z, Lei X & Liu S (2022). A lightweight deep learning model for cattle face recognition. Computers and Electronics in Agriculture, 195 (2022), DOI: https://doi.org/10.1016/j.compag.2022.106848
-
Lu J, Behbood V, Hao P, Zuo H, Xue S & Zhang G (2015). Transfer learning using computational intelligence: A survey. Knowledge-Based Systems, 80 (2015), pp: 14-23, https://doi.org/10.1016/j.knosys.2015.01.010
-
Mikołajczyk A & Grochowski M (2018). Data augmentation for improving deep learning in image classification problem. In 2018 international interdisciplinary PhD workshop (IIPhDW), IEEE publishing, pp. 117-122, Poland. DOI: https://doi.org/10.1109/IIPHDW.2018.8388338
-
Noonan G J, Rand J S, Priest J, Ainscattle J & Blackshaw J K (1994). Behavioural observations of piglets undergoing tail docking, teeth clipping and ear notching. Applied Animal Behaviour Science, 39(3-4), 203-213. DOI: https://doi.org/10.1016/0168-1591(94)90156-2
-
Poggio T, Kawaguchi K, Liao Q, Miranda B, Rosasco L, Boix X & Mhaskar H (2018). Theory of deep learning III: ex-plaining the non-overfitting puzzle. arXiv preprint arXiv:1801.00173. DOI: https://doi.org/10.48550/arXiv.1801.00173
-
Polat H E (2022) New Technologies in Good Agricultural Practices – Smart Farming (In Turkish). In: Yaldız G, Çamlıca M (Eds.), Innovative Approaches in Medicinal and Aromatic Plants Production. Iksad Publications, Ankara/Turkey pp: 27- 54. ISBN:978-625-8246-33-9
-
Psota E T, Luc E K, Pighetti G M, Schneider L G, Fryxell R T, Keele J W & Kuehn L A (2021). Development and validation of a neural network for the automated detection of horn flies on cattle. Computers and Electronics in Agriculture, 180 (2021), DOI: https://doi.org/10.1016/j.compag.2020.105927
-
Punn N S & Agarwal S (2021). Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray images using fine-tuned deep neural networks. Applied Intelligence, 51(5), 2689-2702
-
Huang G, Liu Z, van der Maaten L &Weinberger K Q (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. arXiv. pp: 4700-4708. DOI: https://doi.org/10.48550/arXiv.1608.06993
-
Jiang B, Wu Q, Yin X, Wu D, Song H & He D (2019). FLYOLOv3 deep learning for key parts of dairy cow body detection. Computers and Electronics in Agriculture 166 (2019), DOI: https://doi.org/10.1016/j.compag.2019.104982
-
Qiao Y, Clark C, Lomax S, Kong H, Su D & Sukkarieh S (2021). Automated Individual Cattle Identification Using Video Data: A Unified Deep Learning Architecture Approach. Front. Anim. Sci., 2 (2021), https://doi.org/10.3389/fanim.2021.759147.
-
Rice L, Wong E & Kolter Z (2020). Overfitting in adversarially robust deep learning. Proceedings of the 37 th International Conference on Machine Learning, Vienna, Austria, PMLR 119, 2020. pp. 8093-8104. http://proceedings.mlr.press/v119/rice20a
-
Ruiz-Garcia L & Lunadei L (2011). The role of RFID in agriculture: Applications, limitations and challenges. Computers and Electronics in Agriculture, 79(1), 42-50. DOI: https://doi.org/10.1016/j.compag.2011.08.010
-
Sandler M, Howard A, Zhu M, Zhmoginov A & Chen L C (2018). MobilenetV2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4510–4520. DOI: https://doi.org/10.48550/arXiv.1801.04381
-
Schmidt L, Santurkar S, Tsipras D, Talwar K & Madry A (2018). Adversarially robust generalization requires more data. In Advances in Neural Information Processing Systems, pp. 5014–5026. https://proceedings.neurips.cc/paper/2018/hash/f708f064faaf32a43e4d3c784e6af9ea-Abstract.html
-
Selvaraju R R, Das A, Vedantam R, Cogswell M, Parikh D & Batra D (2016). Grad-CAM: Why did you say that? arXiv preprint arXiv:1611.07450
-
Shahi T B, Sitaula C, Neupane A & Guo W (2022). Fruit classification using attention-based MobileNetV2 for industrial applications. Plos one, 17(2), DOI: https://doi.org/10.1371/journal.pone.0264586
-
Shen W, Hu H, Dai B Wei X, Sun J, Jiang L & Sun Y (2020). Individual identification of dairy cows based on convolutional neural networks. Multimed Tools Appl (79) 14711–14724, https://doi.org/10.1007/s11042-019-7344-7
-
Srivastava N, Hinton G, Krizhevsky A, Sutskever I & Salakhutdinov R (2014). Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):1929–1958, DOI: https://dl.acm.org/doi/abs/10.5555/2627435.2670313
-
Szegedy C, Vanhoucke V, Ioffe S, Shlens J & Wojna Z (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818-2826. https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.html
-
Tsai H, Ambrogio S, Narayanan P, Shelby R M & Burr G W (2018). Recent progress in analog memory-based accelerators for deep learning. Journal of Physics D: Applied Physics, 51(28), DOI: https://doi.org/10.1088/1361-6463/aac8a5
-
Wang H, Qin J, Hou Q & Gong S (2020). Cattle face recognition method based on parameter transfer and deep learning. In Journal of Physics: Conference Series, 1453 (2020), IOP Publishing, DOI: https://doi.org/10.1088/1742-6596/1453/1/012054
-
Wang J, He X, Faming S, Lu G, Cong H & Jiang Q (2021). A Real-Time Bridge Crack Detection Method Based on an Improved Inception-Resnet-v2 Structure. IEEE Access, (9) pp: 93209-93223. DOI: https://doi.org/10.1109/ACCESS.2021.3093210
-
Wang Z, Fu Z, Chen W & Hu J (2010). A RFID-based traceability system for cattle breeding in China. International Conference on Computer Application and System Modeling (ICCASM 2010), IEEE, Taiyuan. DOI: https://doi.org/10.1109/ICCASM.2010.5620675
-
Weng Z, Meng F, Liu S, Zhang Y, Zheng Z & Gong C (2022). Cattle face recognition based on a Two-Branch convolutional neural network. Computers and Electronics in Agriculture, 196 (2022), DOI: https://doi.org/10.1016/j.compag.2022.106871
-
Xiao J, Liu G, Wang K & Si Y (2022). Cow identification in free-stall barns based on an improved Mask R-CNN and an SVM. Computers and Electronics in Agriculture, 194 (2022), DOI: https://doi.org/10.1016/j.compag.2022.106738
-
Xu B, Wang W, Guo L, Chen G, Li Y, Cao Z & Wu S (2022). CattleFaceNet: A cattle face identification approach based on Retina Face and ArcFace loss. Computers and Electronics in Agriculture, 193 (2022), DOI: https://doi.org/10.1016/j.compag.2021.106675
-
Xu B, Wang W, Guo L, Chen G, Wang Y, Zhang W & Li Y (2021). Evaluation of deep learning for automatic multi-view face detection in cattle. Agriculture, 11(11), https://doi.org/10.3390/agriculture11111062
-
Xu M, Yoon S, Fuentes A & Park D S (2023). A comprehensive survey of image augmentation techniques for deep learning. Pattern Recognition, 137 (2023) DOI: https://doi.org/10.1016/j.patcog.2023.109347
-
Yao L, Liu H, Hu Z, Kuang Y, Liu C & Gao Y (2019). Cow face detection and recognition based on automatic feature extraction algorithm. ACM TURC ‘19: Proceedings of the ACM Turing Celebration Conference—China, May 2019, Article No.: 95, Pp 1–5, https://doi.org/10.1145/3321408.3322628
-
Ying W, Zhang Y, Huang J & Yang Q (2018). Transfer learning via learning to transfer. In International Conference on Machine Learning, pp. 5085-5094. Available from https://proceedings.mlr.press/v80/wei18a.html.
-
Zhang C, Bengio S, Hardt M, Recht B & Vinyals O (2016). Understanding deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530. DOI: https://doi.org/10.48550/arXiv.1611.03530
-
Zhang J, Sun G, Zheng K & Mazhar S (2020). Pupil detection based on oblique projection using a binocular camera. IEEE Access, vol: 8, pp: 105754-105765, DOI: https://doi.org/10.1109/ACCESS.2020.3000063
-
Zoph B, Vasudevan V, Shlens J & Le Q V (2018). Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8697-8710. DOI: https://doi.org/10.48550/arXiv.1707.07012
Deep Learning based Individual Cattle Face Recognition using Data Augmentation and Transfer Learning
Year 2025,
Volume: 31 Issue: 1, 137 - 150, 14.01.2025
Havva Eylem Polat
,
Dilara Gerdan Koc
,
Ömer Ertuğrul
,
Caner Koç
,
Kamil Ekinci
Abstract
Accurate identification of cattle is essential for monitoring ownership, controlling production supply, preventing disease, and ensuring animal welfare. Despite the widespread use of ear tag-based techniques in livestock farm management, large-scale farms encounter challenges in identifying individual cattle. The process of identifying individual animals can be hindered by ear tags that fall off, and the ability to identify them over a long period of time becomes impossible when tags are missing. A dataset was generated by capturing images of cattle in their native environment to tackle this issue. The dataset was divided into three segments: training, validation, and testing. The dataset consisted of 15 000 records, each pertaining to a distinct bovine specimen from a total of 30 different cattle. To identify specific cattle faces in this study, deep learning algorithms such as InceptionResNetV2, MobileNetV2, DenseNet201, Xception, and NasNetLarge were utilized. The DenseNet201 algorithm attained a peak test accuracy of 99.53% and a validation accuracy of 99.83%. Additionally, this study introduces a novel approach that integrates advanced image processing techniques with deep learning, providing a robust framework that can potentially be applied to other domains of animal identification, thus enhancing overall farm management and biosecurity.
References
-
Allen A, Golden B, Taylor M, Patterson D, Henriksen D & Skuce R (2008). Evaluation of retinal imaging technology for the biometric identification of bovine animals in Northern Ireland. Livestock science 116(1-3): 42-52. DOI: https://doi.org/10.1016/j.livsci.2007.08.018
-
Andrew W, Greatwood C & Burghardt T (2017). Visual localisation and individual identification of holstein friesian cattle via deep learning. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2850-2859. Available from https://openaccess.thecvf.com/content_ICCV_2017_workshops/w41/html/Andrew_Visual_Localisation_and_ICCV_2017_paper.html
-
Awad A I (2016). From classical methods to animal biometrics: A review on cattle identification and tracking. Computers and Electronics in Agriculture, 123(2016): 423-435, https://doi.org/10.1016/j.compag.2016.03.014
-
Bhatia Y, Bajpayee A, Raghuvanshi D & Mittal H (2019). Image captioning using Google’s inception-resnet-v2 and recurrent neural network. In 2019 Twelfth International Conference on Contemporary Computing (IC3), IEEE Publish-ing, pp. 1-6. DOI: https://doi.org/10.1109/IC3.2019.8844921
-
Cai C & Li J (2013). Cattle face recognition using local binary pattern descriptor. In 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, IEEE Publishing pp. 1-4. DOI: https://doi.org/10.1109/APSIPA.2013.6694369
-
Caron M, Touvron H, Misra I, Jégou H, Mairal J, Bojanowski P & Joulin A (2021). Emerging properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9650-9660. DOI: https://doi.org/10.48550/arXiv.2104.14294
-
Chen X, Yang T, Mai K, Liu C, Xiong J, Kuan Y & Gao Y (2022). Holstein Cattle Face Re-Identification Unifying Glob-al and Part Feature Deep Network with Attention Mechanism. Animals, 12(8), DOI: https://doi.org/10.3390/ani12081047
DeVries T & Taylor G W (2017). Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552. DOI: https://doi.org/10.48550/arXiv.1708.04552
-
Doersch C, Gupta A & Efros A A (2015). Unsupervised visual representation learning by context prediction. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1422-1430. Available from https://www.cv-foundation.org/openaccess/content_iccv_2015/html/Doersch_Unsupervised_Visual_Representation_ICCV_2015_paper.html
Džermeikaitė K, Bačėninaitė D & Antanaitis R (2023). Innovations in Cattle Farming: Application of Innovative Technologies and Sensors in the Diagnosis of Diseases. Animals, 13(5): 780
-
Fosgate G T, Adesiyun A A & Hird D W (2006). Ear-tag retention and identification methods for extensively managed water buffalo (Bubalus bubalis) in Trinidad. Preventive veterinary medicine, 73(4): 287-296. DOI: https://doi.org/10.1016/j.prevetmed.2005.09.006
-
Gerdan Koc D, Koc C &Vatandas M (2023). Diagnosis of tomato plant diseases using pre-trained architectures and a proposed convolutional neural network model. Journal of Agricultural Sciences (Tarim Bilimleri Dergisi) 29(2): 627-638. doi.org/10.15832/ankutbd.957265
-
Grill J B, Strub F, Altché F, Tallec C, Richemond P, Buchatskaya E & Valko M (2020). Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural information processing systems, 33, pp: 21271-21284. ISBN: 9781713829546. Available from https://proceedings.neurips.cc/paper/2020/hash/f3ada80d5c4ee70142b17b8192b2958e-Abstract.html
-
Guo S S, Lee K H, Chang L, Tseng C D, Sie S J, Lin G Z & Lee T F (2022). Development of an Automated Body Temperature Detection Platform for Face Recognition in Cattle with YOLO V3-Tiny Deep Learning and Infrared Thermal Imaging. Applied Sciences, 12(8), DOI: https://doi.org/10.3390/app12084036
-
Hansen M F, Smith M L, Smith L N, Salter M G, Baxter E M, Farish M & Grieve B (2018). Towards on-farm pig face recognition using convolutional neural networks. Computers in Industry 98: 145-152
-
Kaixuan Z & Dongjian H (2015). Recognition of individual dairy cattle based on convolutional neural networks. Transactions of the Chinese Society of Agricultural Engineering, 31(5): 181-187. Available from https://www.cabdirect.org/cabdirect/abstract/20153218172
-
Kang X, Zhang X D & Liu G (2020). Accurate detection of lameness in dairy cattle with computer vision: A new and individualized detection strategy based on the analysis of the supporting phase. Journal of dairy science, 103 (11): 10628-10638. DOI: https://doi.org/10.3168/jds.2020-18288
-
Khosla C & Saini B S (2020). Enhancing performance of deep learning models with different data augmentation techniques: A survey. In 2020 International Conference on Intelligent Engineering and Management (ICIEM), IEEE, pp. 79-85, DOI: https://doi.org/10.1109/ICIEM48762.2020.9160048
-
Kumar S, Pandey A, Satwik K S R, Kumar S, Singh S K, Singh A K &Mohan A (2018). Deep learning framework for recognition of cattle using muzzle point image pattern. Measurement, 116 (2018), pp: 1-17, DOI: https://doi.org/10.1016/j.measurement.2017.10.064
-
Kumar S, Singh S K, Dutta T & Gupta H P (2016). A fast cattle recognition system using smart devices. MM ‘16: Proceedings of the 24th ACM international conference on Multimedia, October 2016, pp: 742–743, DOI: https://doi.org/10.1145/2964284.2973829
-
Kumar S, Singh S K, Singh R & Singh A K (2017). Recognition of Cattle Using Face Images. In: Animal Biometrics. Springer, Singapore. DOI: https://doi.org/10.1007/978-981-10-7956-6_3
-
Kusakunniran W & Chaiviroonjaroen T (2018). Automatic cattle identification based on multi-channel lbp on muzzle images. In 2018 International Conference on Sustainable Information Engineering and Technology (SIET), IEEE Publishing, pp:1-5. DOI: https://doi.org/10.1109/SIET.2018.8693161
-
Li G, Erickson G E & Xiong Y (2022). Individual Beef Cattle Identification Using Muzzle Images and Deep Learning Techniques. Animals, 12(11), DOI: https://doi.org/10.3390/ani12111453
-
Li Z, Lei X & Liu S (2022). A lightweight deep learning model for cattle face recognition. Computers and Electronics in Agriculture, 195 (2022), DOI: https://doi.org/10.1016/j.compag.2022.106848
-
Lu J, Behbood V, Hao P, Zuo H, Xue S & Zhang G (2015). Transfer learning using computational intelligence: A survey. Knowledge-Based Systems, 80 (2015), pp: 14-23, https://doi.org/10.1016/j.knosys.2015.01.010
-
Mikołajczyk A & Grochowski M (2018). Data augmentation for improving deep learning in image classification problem. In 2018 international interdisciplinary PhD workshop (IIPhDW), IEEE publishing, pp. 117-122, Poland. DOI: https://doi.org/10.1109/IIPHDW.2018.8388338
-
Noonan G J, Rand J S, Priest J, Ainscattle J & Blackshaw J K (1994). Behavioural observations of piglets undergoing tail docking, teeth clipping and ear notching. Applied Animal Behaviour Science, 39(3-4), 203-213. DOI: https://doi.org/10.1016/0168-1591(94)90156-2
-
Poggio T, Kawaguchi K, Liao Q, Miranda B, Rosasco L, Boix X & Mhaskar H (2018). Theory of deep learning III: ex-plaining the non-overfitting puzzle. arXiv preprint arXiv:1801.00173. DOI: https://doi.org/10.48550/arXiv.1801.00173
-
Polat H E (2022) New Technologies in Good Agricultural Practices – Smart Farming (In Turkish). In: Yaldız G, Çamlıca M (Eds.), Innovative Approaches in Medicinal and Aromatic Plants Production. Iksad Publications, Ankara/Turkey pp: 27- 54. ISBN:978-625-8246-33-9
-
Psota E T, Luc E K, Pighetti G M, Schneider L G, Fryxell R T, Keele J W & Kuehn L A (2021). Development and validation of a neural network for the automated detection of horn flies on cattle. Computers and Electronics in Agriculture, 180 (2021), DOI: https://doi.org/10.1016/j.compag.2020.105927
-
Punn N S & Agarwal S (2021). Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray images using fine-tuned deep neural networks. Applied Intelligence, 51(5), 2689-2702
-
Huang G, Liu Z, van der Maaten L &Weinberger K Q (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. arXiv. pp: 4700-4708. DOI: https://doi.org/10.48550/arXiv.1608.06993
-
Jiang B, Wu Q, Yin X, Wu D, Song H & He D (2019). FLYOLOv3 deep learning for key parts of dairy cow body detection. Computers and Electronics in Agriculture 166 (2019), DOI: https://doi.org/10.1016/j.compag.2019.104982
-
Qiao Y, Clark C, Lomax S, Kong H, Su D & Sukkarieh S (2021). Automated Individual Cattle Identification Using Video Data: A Unified Deep Learning Architecture Approach. Front. Anim. Sci., 2 (2021), https://doi.org/10.3389/fanim.2021.759147.
-
Rice L, Wong E & Kolter Z (2020). Overfitting in adversarially robust deep learning. Proceedings of the 37 th International Conference on Machine Learning, Vienna, Austria, PMLR 119, 2020. pp. 8093-8104. http://proceedings.mlr.press/v119/rice20a
-
Ruiz-Garcia L & Lunadei L (2011). The role of RFID in agriculture: Applications, limitations and challenges. Computers and Electronics in Agriculture, 79(1), 42-50. DOI: https://doi.org/10.1016/j.compag.2011.08.010
-
Sandler M, Howard A, Zhu M, Zhmoginov A & Chen L C (2018). MobilenetV2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4510–4520. DOI: https://doi.org/10.48550/arXiv.1801.04381
-
Schmidt L, Santurkar S, Tsipras D, Talwar K & Madry A (2018). Adversarially robust generalization requires more data. In Advances in Neural Information Processing Systems, pp. 5014–5026. https://proceedings.neurips.cc/paper/2018/hash/f708f064faaf32a43e4d3c784e6af9ea-Abstract.html
-
Selvaraju R R, Das A, Vedantam R, Cogswell M, Parikh D & Batra D (2016). Grad-CAM: Why did you say that? arXiv preprint arXiv:1611.07450
-
Shahi T B, Sitaula C, Neupane A & Guo W (2022). Fruit classification using attention-based MobileNetV2 for industrial applications. Plos one, 17(2), DOI: https://doi.org/10.1371/journal.pone.0264586
-
Shen W, Hu H, Dai B Wei X, Sun J, Jiang L & Sun Y (2020). Individual identification of dairy cows based on convolutional neural networks. Multimed Tools Appl (79) 14711–14724, https://doi.org/10.1007/s11042-019-7344-7
-
Srivastava N, Hinton G, Krizhevsky A, Sutskever I & Salakhutdinov R (2014). Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):1929–1958, DOI: https://dl.acm.org/doi/abs/10.5555/2627435.2670313
-
Szegedy C, Vanhoucke V, Ioffe S, Shlens J & Wojna Z (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818-2826. https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.html
-
Tsai H, Ambrogio S, Narayanan P, Shelby R M & Burr G W (2018). Recent progress in analog memory-based accelerators for deep learning. Journal of Physics D: Applied Physics, 51(28), DOI: https://doi.org/10.1088/1361-6463/aac8a5
-
Wang H, Qin J, Hou Q & Gong S (2020). Cattle face recognition method based on parameter transfer and deep learning. In Journal of Physics: Conference Series, 1453 (2020), IOP Publishing, DOI: https://doi.org/10.1088/1742-6596/1453/1/012054
-
Wang J, He X, Faming S, Lu G, Cong H & Jiang Q (2021). A Real-Time Bridge Crack Detection Method Based on an Improved Inception-Resnet-v2 Structure. IEEE Access, (9) pp: 93209-93223. DOI: https://doi.org/10.1109/ACCESS.2021.3093210
-
Wang Z, Fu Z, Chen W & Hu J (2010). A RFID-based traceability system for cattle breeding in China. International Conference on Computer Application and System Modeling (ICCASM 2010), IEEE, Taiyuan. DOI: https://doi.org/10.1109/ICCASM.2010.5620675
-
Weng Z, Meng F, Liu S, Zhang Y, Zheng Z & Gong C (2022). Cattle face recognition based on a Two-Branch convolutional neural network. Computers and Electronics in Agriculture, 196 (2022), DOI: https://doi.org/10.1016/j.compag.2022.106871
-
Xiao J, Liu G, Wang K & Si Y (2022). Cow identification in free-stall barns based on an improved Mask R-CNN and an SVM. Computers and Electronics in Agriculture, 194 (2022), DOI: https://doi.org/10.1016/j.compag.2022.106738
-
Xu B, Wang W, Guo L, Chen G, Li Y, Cao Z & Wu S (2022). CattleFaceNet: A cattle face identification approach based on Retina Face and ArcFace loss. Computers and Electronics in Agriculture, 193 (2022), DOI: https://doi.org/10.1016/j.compag.2021.106675
-
Xu B, Wang W, Guo L, Chen G, Wang Y, Zhang W & Li Y (2021). Evaluation of deep learning for automatic multi-view face detection in cattle. Agriculture, 11(11), https://doi.org/10.3390/agriculture11111062
-
Xu M, Yoon S, Fuentes A & Park D S (2023). A comprehensive survey of image augmentation techniques for deep learning. Pattern Recognition, 137 (2023) DOI: https://doi.org/10.1016/j.patcog.2023.109347
-
Yao L, Liu H, Hu Z, Kuang Y, Liu C & Gao Y (2019). Cow face detection and recognition based on automatic feature extraction algorithm. ACM TURC ‘19: Proceedings of the ACM Turing Celebration Conference—China, May 2019, Article No.: 95, Pp 1–5, https://doi.org/10.1145/3321408.3322628
-
Ying W, Zhang Y, Huang J & Yang Q (2018). Transfer learning via learning to transfer. In International Conference on Machine Learning, pp. 5085-5094. Available from https://proceedings.mlr.press/v80/wei18a.html.
-
Zhang C, Bengio S, Hardt M, Recht B & Vinyals O (2016). Understanding deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530. DOI: https://doi.org/10.48550/arXiv.1611.03530
-
Zhang J, Sun G, Zheng K & Mazhar S (2020). Pupil detection based on oblique projection using a binocular camera. IEEE Access, vol: 8, pp: 105754-105765, DOI: https://doi.org/10.1109/ACCESS.2020.3000063
-
Zoph B, Vasudevan V, Shlens J & Le Q V (2018). Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8697-8710. DOI: https://doi.org/10.48550/arXiv.1707.07012