Araştırma Makalesi
BibTex RIS Kaynak Göster

Lityum İyon Piller İçin Sn-Cu/rGO (İndirgenmiş Grafen Oksit) Anot Malzemelerin, Karakterizasyonu ve Elektrokimyasal Özellikleri

Yıl 2017, Cilt: 5 Sayı: 3, 19 - 25, 01.10.2017
https://doi.org/10.21541/apjes.336104

Öz

Lityum iyon pilleri uzun
kullanım ve raf ömrü, geniş kullanım sıcaklık aralığı, hızlı şarj
edilebilirlik, yüksek enerji verimliliği gibi özellikleriyle son zamanlarda öne
çıkan güç kaynaklarındandır. Grafite alternatif olarak kalay esaslı elektrot
malzemeleri yüksek kapasite değerlerinden dolayı ilgi çekicidir. Ancak
şarj/deşarj esnasında kalay esaslı elektrot malzemesinin karşılaştığı en büyük
problem hacim genleşmesidir. Bu problemi aşmaya yönelik olarak aktif veya
inaktif malzeme ile birleştirilerek değiştirilebilir. Sn, Sn-Cu ve Sn-Cu/rGO
tozları kimyasal indirgeme yöntemi ile Li iyon piller için anot malzemesi
olarak üretilmiştir. Sn, Sn-Cu ve Sn-Cu/rGO tozların mikroyapı incelemeleri
taramalı elektron mikroskobu (SEM) ile gerçekleştirilmiştir. Enerji dağılım
X-ışınları spektroskopisi (EDS) ile Sn-Cu/rGO 
kompozit tozlarının elementel analizleri yapılmıştır.. Üretilen Sn,
Sn-Cu ve Sn-Cu/rGO
  tozlar bakır akım
toplayıcı üzerinde elektrot olarak hazırlanmış ve CR2016 düğme tipi hücreler
kullanılarak 200 mA/g sabit akım yoğunluğunda elektrokimyasal testleri
gerçekleştirilmiştir. Elektrokimyasal test sonuçlarına göre, Sn-Cu/rGO kompozit
anot malzemesi Sn ve Sn-Cu elektrotlara göre daha iyi elektrokimyasal performans
göstermiş ve 100 çevrim sonunda yaklaşık 430 mAh/g deşarj kapasitesi elde
edilmiştir.

Kaynakça

  • KAYNAKLAR [1] UYSAL M., Lityum İyon Piller İçin Kesikli Akim Yöntemi İle Kalay Esasli Kompozit Anotlarin Geliştirilmesi Doktora Tezi Sakarya Üniversitesi, Türkiye, 2015 [2] ZHOU S., Nanonet-Based Materıals For Advanced Energy Storage Doctor of Philosophy Boston College The Graduate School of Arts and Sciences Department of Chemistry, USA, 2012. [3] DENİZLİ F., Lityum İyon Pilleri İçin Elektron Demeti İle Fiziksel Buhar Biriktirme (EBPVD) Yöntemi Kullanılarak İnce Film Anot Malzemesi Üretimi Ve Karakterizasyonu Yüksek Lisans Tezi İstanbul Teknik Üniversitesi, Türkiye, 2011.. [4] ALAF M., Lityum İyon Piller İçin Sn/SnO2/KNT Kompozit Anotlarının Geliştirilmesi Doktora Tezi Sakarya Üniversitesi, Türkiye, 2014 [5] LEITE E.R., Nanostructured Materials for Electrochemical Energy Production and Storage, Springer, New York, 2009. [6] SUBRAHMANYAM G., ERMANNO M., FRANCESCO DE A., ENZO Dİ F., REMO PROİETTİ Z., CLAUDİO C., Review on recent progress of nanostructured anode materials for Li-ion batteries, Journal of Power Sources 257, 421–443, 2014. [7] MAROM R., AMALRAJ S.F., LEİFER N., JACOB D., AURBACH D., A review of advanced and practical lithium battery materials, Journal of Materials. Chemistry, 21, 9938–9954, 2011. [8] WACHTLER M., WİNTER M., AND BESENHARD J. O., Anodic materials for rechargeable Li-batteries. Journal of Power Sources. 105, 151–160, 2002. [9] SCROSATİ B., GARCHE J., Lithium batteries: Status, prospects and future Journal of Power Sources, 195, 2419–2430, 2010.. [10] JUNSHENG Z., DIANLONG W., TIEFENG L.CHENFENG G.Preparation of Sn-Co-graphene composites with superior lithium storage capability Electrochimica Acta, 125, 347-353,2014 [11] MAO, O., TURNERB, R.L., COURTNEYA, I.A., FREDERICKSEN, B.D., BUCKETT, M.I., KRAUSE, L. J., DAHN, J.R., Active/Inactive Nanocomposites as Anodes for Li ‐ Ion Batteries, Journal of Electrochem. Society 2, 3–5, 1999. [12] JUNSHENG Z, GUANGZHOU H, JIN Z Preparation of Sn-Cu-graphene nanocomposites with superior reversible lithium ion storage Materials Letters, 185, 565-568,2016 [13] HUAN W, XU L, MONTGOMERY B-F, PLACIDUS B A 3D graphene-based anode materials for Li-ion batteries Current Opinion in Chemical Engineering, 13, 124-132 ,2016 [14] XIAOQIU C, QIANG R, ZHEN W, XIANHUA H, SHEJUN H Ternary Sn-Sb-Co alloy particles embedded in reduced graphene oxide as lithium ion battery anodes Materials Letters, 191, 218-221,2017 [15] JIZHANG C, LI Y, SHAOHUA F, ZHENGXI Z, SHIN-ICHI H Facile fabrication of graphene/Cu6Sn5 nanocomposite as the high performance anode material for lithium ion batteries Electrochimica Acta, 105, 629-634,2013 [16] ZHAO H., JIANG C., HE X., REN J., WAN C., Advanced structures in electrodeposited tin base anodes for lithium ion batteries, Electrochim. Acta, 52, 7820–7826, 2007. [17]JUNSHENG Z, ANMIN L, DIANLONG W Study on the synergistic lithium storage performance of Sn/graphene nanocomposites via quantum chemical calculations and experiments Applied Surface Science, 416, 751-756,2017 [18]UYSAL M, CETİNKAYA T. ALP A, AKBULUT H Fabrication of Sn–Ni/MWCNT composite coating for Li-ion batteries by pulse electrodeposition: Effects of duty cycle Applied Surface Science, 334, Pages 80-86,2015 [19]UYSAL M, CETİNKAYA T, KARTAL M. ALP A, AKBULUT H Production of Sn–Cu/MWCNT composite electrodes for Li-ion batteries by using electroless tin coating Thin Solid Films, 572, 216-223,2014 [20] PETER, B.G., BRUNO, S., JEAN-MARIE, T., Nanomaterials for rechargable lithium batteries. Angewandte Chemie, 47, 2–19, 2008. [21] QIN J, HE C, ZHAO N, WANG Z, SHI C, EZ LIU, LI J Graphene networks anchored with Sn@ graphene as lithium ion battery anode, ACS Nano 8 (2), 1728–1738,2014 [22]PENG H, LI R, HU J, DENG W, PAN F Core–Shell Sn–Ni–Cu-Alloy@ Carbon Nanorods to Array as Three-Dimensional Anode by Nanoelectrodeposition for High-Performance Lithium Ion Batteries - ACS applied materials, 8 (19), 12221–12227,2016
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Uysal

Harun Gül

Yayımlanma Tarihi 1 Ekim 2017
Gönderilme Tarihi 25 Ağustos 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 5 Sayı: 3

Kaynak Göster

IEEE M. Uysal ve H. Gül, “Lityum İyon Piller İçin Sn-Cu/rGO (İndirgenmiş Grafen Oksit) Anot Malzemelerin, Karakterizasyonu ve Elektrokimyasal Özellikleri”, APJES, c. 5, sy. 3, ss. 19–25, 2017, doi: 10.21541/apjes.336104.