Research Article
BibTex RIS Cite

Shale Gas Extraction And Treatment Of Shale Gas Wastewater

Year 2019, Volume: 7 Issue: 1, 106 - 114, 15.01.2019
https://doi.org/10.21541/apjes.411745

Abstract

Nowadays, shale gas is considered as a new source of
energy and researches on shale gas extraction continue to increase all over the
world. Shale gas extraction uses high volumes of pressurized water which are
injected in the shale rock during the horizontal and vertical drilling. About
10% to 80% of the water injected into the rock forms returns back and emerges
as wastewater. In order to minimize the volume of generated wastewater, a
pre-treatment of shale gas wastewater is on a great importance making their
reuse possible in extraction studies. On the other hand, shale gas wastewater contains
the high amounts of total dissolved solids, heavy metals, hydrocarbons, and
organic matter and it must be treated before being discharged. In this review,
shale gas extraction methods, the properties and treatment methods of the
wastewater produced during extraction were examined. The treatability of shale
gas wastewater by evaporation with the mechanical vapor compression, membrane
distillation, reverse osmosis, forward osmosis, advanced chemical treatment
methods, and biological treatment methods have been investigated.

References

  • [1] “Key World Energy Statistics 2012,” Key World Energy Statistics, 2013.
  • [2] S. Pacala, “Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies,” Science, vol. 305, no. 5686, pp. 968–972, 2004.
  • [3] M. Melikoglu, “Vision 2023: Forecasting Turkeys natural gas demand between 2013 and 2030,” Renewable and Sustainable Energy Reviews, vol. 22, pp. 393–400, 2013.
  • [4] V. A. Kuuskraa, “Natural Gas Resources, Unconventional,” Encyclopedia of Energy, pp. 257–272, 2004.
  • [5] Q. Wang, X. Chen, A. N. Jha, and H. Rogers, “Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States,” Renewable and Sustainable Energy Reviews, vol. 30, pp. 1–28, 2014.
  • [6] S. D. Golding, C. J. Boreham, and J. S. Esterle, “Stable isotope geochemistry of coal bed and shale gas and related production waters: A review,” International Journal of Coal Geology, vol. 120, pp. 24–40, 2013.
  • [7] M. Melikoglu, “Shale gas: Analysis of its role in the global energy market,” Renewable and Sustainable Energy Reviews, vol. 37, pp. 460–468, 2014.
  • [8] D. M. Kargbo, R. G. Wilhelm, and D. J. Campbell, “Natural Gas Plays in the Marcellus Shale: Challenges and Potential Opportunities,” Environmental Science & Technology, vol. 44, no. 15, pp. 5679–5684, 2010.
  • [9] R. A. Kerr, “Natural Gas From Shale Bursts Onto the Scene,” Science, vol. 328, no. 5986, pp. 1624–1626, 2010.
  • [10] “Technically Recoverable Shale Oil and Shale Gas Resources.” [Online]. Available: https://www.bing.com/cr?IG=A691EDAF1780442E86B1EDF22E3984CE&CID=3660B06AF0D26492028FBBA9F17D6598&rd=1&h=Qv8EDLVknr03YA3v-iEi1bj89d6oJ371cJEWh4_EL-w&v=1&r=https://www.eia.gov/analysis/studies/worldshalegas/pdf/overview.pdf&p=DevEx,5068.1. [Accessed: 31-Mar-2018].
  • [11] K.A.N. Bozdogan, T. Erten, Y. H. Iztan, A. Cubukcu, M. G. D. Korucu, "Anadolu Diyarbakir Bolgesi Paleozoyik birimlerin stratigrafisi ve petrol potansiyeli", Turkiye 10. Petrol Kongresi ve Sergisi Bildiri Kitabi. Ankara, 125-139, 1994.
  • [12] A. Aydemir, “Comparison of Mississippian Barnett Shale, Northern-Central Texas, USA and Silurian Dadas Formation in Southeast Turkey,” Journal of Petroleum Science and Engineering, vol. 80, no. 1, pp. 81–93, 2011.
  • [13] “Turkey's shale gas hopes draw growing interest,” Reuters, 18-Feb-2013. [Online]. Available: https://www.reuters.com/article/turkey-shale/turkeys-shale-gas-hopes-draw-growing-interest-idUSL6N0BI8CQ20130218. [Accessed: 31-Mar-2018].
  • [14] S. Jenner and A. J. Lamadrid, “Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States,” Energy Policy, vol. 53, pp. 442–453, 2013.
  • [15] D. L. Shaffer, L. H. A. Chavez, M. Ben-Sasson, S. R.-V. Castrillón, N. Y. Yip, and M. Elimelech, “Desalination and Reuse of High-Salinity Shale Gas Produced Water: Drivers, Technologies, and Future Directions,” Environmental Science & Technology, vol. 47, no. 17, pp. 9569–9583, 2013.
  • [16] “Environmental Stewardship: Lessons for European ...” [Online]. Available: https://www.bing.com/cr?IG=DF1182DA445640A38C3DA1EBA9CFFE6A&CID=3225D5F6E4106A0E15B8DE35E5BF6BDF&rd=1&h=hONIQGgNKHo13g4AX6CkTrmIiq4mfiet6K7aR5QAsiM&v=1&r=https://www.onepetro.org/journal-paper/SPE-167714-PA&p=DevEx,5066.1. [Accessed: 31-Mar-2018].
  • [17] R. D. Vidic, S. L. Brantley, J. M. Vandenbossche, D. Yoxtheimer, and J. D. Abad, “Impact of Shale Gas Development on Regional Water Quality,” Science, vol. 340, no. 6134, pp. 1235009–1235009, 2013.
  • [18] E. Barbot, N. Vidic, K. Gregory, and R. Vidic, “Spatial and Temporal Correlation of Water Quality Parameters of Produced Waters from Devonian-Age Shale following Hydraulic Fracturing,” Wastewater and Shale Formation Development, pp. 41–59, 2015.
  • [19] M. A. Engle and E. L. Rowan, “Geochemical evolution of produced waters from hydraulic fracturing of the Marcellus Shale, northern Appalachian Basin: A multivariate compositional data analysis approach,” International Journal of Coal Geology, vol. 126, pp. 45–56, 2014.
  • [20] T. Colborn, C. Kwiatkowski, K. Schultz, and M. Bachran, “Natural Gas Operations from a Public Health Perspective,” Human and Ecological Risk Assessment: An International Journal, vol. 17, no. 5, pp. 1039–1056, 2011.
  • [21] J. M. Estrada and R. Bhamidimarri, “A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing,” Fuel, vol. 182, pp. 292–303, 2016.
  • [22] K. J. Ferrar, D. R. Michanowicz, C. L. Christen, N. Mulcahy, S. L. Malone, and R. K. Sharma, “Assessment of Effluent Contaminants from Three Facilities Discharging Marcellus Shale Wastewater to Surface Waters in Pennsylvania,” Environmental Science & Technology, vol. 47, no. 7, pp. 3472–3481, 2013.
  • [23] M. Bădileanu, M. F. Bulearcă, C. Russu, M.-S. Muscalu, C. Neagu, R. Bozga, C. Sima, L. I. Georgescu, and D. N. Băleanu, “Shale Gas Exploitation– Economic Effects and Risks,” Procedia Economics and Finance, vol. 22, pp. 95–104, 2015.
  • [24] “Shale gas – Information on hydraulic fracturing (‘fracking’).” [Online]. Available: http://www.bing.com/cr?IG=4B8B40AB40454F339537A3D7516C16AD&CID=2450DC54C03E6C800D31D797C1916D17&rd=1&h=AGDDyjVcz_2erblUIeC_8SKdq1sp7Hr5TWIGhyIu-YA&v=1&r=http://www.eawag.ch/fileadmin/Domain1/Beratung/Beratung_Wissenstransfer/Publ_Praxis/Factsheets/fs_fracking_apr2013.pdf&p=DevEx,5260.1. [Accessed: 31-Mar-2018].
  • [25] C. Wang, F. Wang, H. Du, and X. Zhang, “Is China really ready for shale gas revolution—Re-evaluating shale gas challenges,” Environmental Science & Policy, vol. 39, pp. 49–55, 2014.
  • [26] B. G. Rahm, J. Bates, L. R. Bertoia, A. E. Galford, D. Yoxtheimer, and S. Riha, “Wastewater Management and Marcellus Shale Gas Development: Trends, Drivers, and Planning Implications,” SSRN Electronic Journal, 2012.
  • [27] “Marcellus Shale Post-Frac Flowback Waters - Where is All ...” [Online]. Available: https://www.bing.com/cr?IG=6C6DE3C8EACB4DD7B2C979E303471DFE&CID=178019C9511F644E0599120A50B0650B&rd=1&h=_5JAY0W82FUSCDeUR91OSkCm8svIHSQ9hUaHue4CLa4&v=1&r=https://www.onepetro.org/conference-paper/SPE-125740-MS&p=DevEx,5067.1. [Accessed: 31-Mar-2018].
  • [28] K. B. Gregory, R. D. Vidic, and D. A. Dzombak, “Water Management Challenges Associated with the Production of Shale Gas by Hydraulic Fracturing,” Elements, vol. 7, no. 3, pp. 181–186, Jan. 2011.
  • [29] O. Olsson, D. Weichgrebe, and K.-H. Rosenwinkel, “Hydraulic fracturing wastewater in Germany: composition, treatment, concerns,” Environmental Earth Sciences, vol. 70, no. 8, pp. 3895–3906, 2013.
  • [30] J. S. Harkness, G. S. Dwyer, N. R. Warner, K. M. Parker, W. A. Mitch, and A. Vengosh, “Iodide, Bromide, and Ammonium in Hydraulic Fracturing and Oil and Gas Wastewaters: Environmental Implications,” Environmental Science & Technology, vol. 49, no. 3, pp. 1955–1963, 2015.
  • [31] Q. Jiang, J. Rentschler, R. Perrone, and K. Liu, “Application of ceramic membrane and ion-exchange for the treatment of the flowback water from Marcellus shale gas production,” Journal of Membrane Science, vol. 431, pp. 55–61, 2013.
  • [32] “Sampling and Analysis of Water Streams Associated with the ...” [Online]. Available: http://www.bing.com/cr?IG=97E7AB4822B64107BF188C0DB4F68A32&CID=1A4C068249046E6803790D4148AB6FB6&rd=1&h=l_LdLXTAygJrSDbmC52qvXCFALFqL3iln1YQTZdBoP4&v=1&r=http://energyindepth.org/wp-content/uploads/marcellus/2012/11/MSCommission-Report.pdf&p=DevEx,5068.1. [Accessed: 31-Mar-2018].
  • [33] S. B. Kausley, C. P. Malhotra, and A. B. Pandit, “Treatment and reuse of shale gas wastewater: Electrocoagulation system for enhanced removal of organic contamination and scale causing divalent cations,” Journal of Water Process Engineering, vol. 16, pp. 149–162, 2017.
  • [34] R. S. Rodriguez and D. J. Soeder, “Evolving water management practices in shale oil & gas development,” Journal of Unconventional Oil and Gas Resources, vol. 10, pp. 18–24, 2015.
  • [35] G. L. Theodori, A. Luloff, F. K. Willits, and D. B. Burnett, “Hydraulic fracturing and the management, disposal, and reuse of frac flowback waters: Views from the public in the Marcellus Shale,” Energy Research & Social Science, vol. 2, pp. 66–74, 2014.
  • [36] “Produced Water Reuse and Recycling Challenges and Opportunities Across Major Shale Plays,” EPA, 26-Oct-2017. [Online]. Available: https://www.epa.gov/hfstudy/produced-water-reuse-and-recycling-challenges-and-opportunities-across-major-shale-plays. [Accessed: 31-Mar-2018].
  • [37] M. B. Adams, “Land Application of Hydrofracturing Fluids Damages a Deciduous Forest Stand in West Virginia,” Journal of Environment Quality, vol. 40, no. 4, p. 1340, 2011.
  • [38] F.R. Ahmadun, A. Pendashteh, L.C. Abdullah, D.R.A. Biak, S.S. Madaeni, and Z.Z. Abidin, "Review of technologies for oil and gas produced water treatment", Journal of Hazardous Materials, vol. 170, p. 530-551, 2009.
  • [39] “Cost Effective Recovery of Low-TDS Frac Flowback Water for ...” [Online]. Available: https://www.bing.com/cr?IG=22C3AB22F33840AB9B9CD34D5840DBDF&CID=1BEDBD4CCD136A72153BB68FCCBC6B42&rd=1&h=qQf4Tr9pyv3xXPjjdZPkyUihtFbZWlfHdPBsYH30rOQ&v=1&r=https://www.netl.doe.gov/file library/Research/oil-gas/FE0000784_FinalReport.pdf&p=DevEx,5067.1. [Accessed: 31-Mar-2018].
  • [40] E. T. Igunnu and G. Z. Chen, “Produced water treatment technologies,” International Journal of Low-Carbon Technologies, vol. 9, no. 3, pp. 157–177, Apr. 2012.
  • [41] J. Minier-Matar, A. Hussain, A. Janson, and S. Adham, “Treatment of Produced Water from Unconventional Resources by Membrane Distillation,” International Petroleum Technology Conference, 2014.
  • [42] A. Alkhudhiri, N. Darwish, and N. Hilal, “Membrane distillation: A comprehensive review,” Desalination, vol. 287, pp. 2–18, 2012.
  • [43] F. Macedonio, A. Ali, T. Poerio, E. El-Sayed, E. Drioli, and M. Abdel-Jawad, “Direct contact membrane distillation for treatment of oilfield produced water,” Separation and Purification Technology, vol. 126, pp. 69–81, 2014.
  • [44] D. L. Shaffer, J. R. Werber, H. Jaramillo, S. Lin, and M. Elimelech, “Forward osmosis: Where are we now?,” Desalination, vol. 356, pp. 271–284, 2015.
  • [45] B. D. Coday, P. Xu, E. G. Beaudry, J. Herron, K. Lampi, N. T. Hancock, and T. Y. Cath, “The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams,” Desalination, vol. 333, no. 1, pp. 23–35, 2014.
  • [46] T. Cath, A. Childress, and M. Elimelech, “Forward osmosis: Principles, applications, and recent developments,” Journal of Membrane Science, vol. 281, no. 1-2, pp. 70–87, 2006.
  • [47] K. L. Hickenbottom, N. T. Hancock, N. R. Hutchings, E. W. Appleton, E. G. Beaudry, P. Xu, and T. Y. Cath, “Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations,” Desalination, vol. 312, pp. 60–66, 2013.
  • [48] G. Chen, Z. Wang, L. D. Nghiem, X.-M. Li, M. Xie, B. Zhao, M. Zhang, J. Song, and T. He, “Treatment of shale gas drilling flowback fluids (SGDFs) by forward osmosis: Membrane fouling and mitigation,” Desalination, vol. 366, pp. 113–120, 2015.
  • [49] A. Butkovskyi, A.-H. Faber, Y. Wang, K. Grolle, R. Hofman-Caris, H. Bruning, A. P. V. Wezel, and H. H. Rijnaarts, “Removal of organic compounds from shale gas flowback water,” Water Research, vol. 138, pp. 47–55, 2018.
  • [50] H. S. Erkan, N. B. Turan, and G. O. Engin, “Wastewater treatment from shale gas operation by Fenton process: a statistical optimization,” Desalination And Water Treatment, vol. 70, pp. 125–133, 2017.
  • [51] N. B. Turan, H. S. Erkan, and G. O. Engin, “The investigation of shale gas wastewater treatment by electro-Fenton process: Statistical optimization of operational parameters,” Process Safety and Environmental Protection, vol. 109, pp. 203–213, 2017.
  • [52] Z. A. Stoll, C. Forrestal, Z. J. Ren, and P. Xu, “Shale gas produced water treatment using innovative microbial capacitive desalination cell,” Journal of Hazardous Materials, vol. 283, pp. 847–855, 2015.
  • [53] C. Forrestal, Z. Stoll, P. Xu, and Z. J. Ren, “Microbial capacitive desalination for integrated organic matter and salt removal and energy production from unconventional natural gas produced water,” Environmental Science: Water Research & Technology, vol. 1, no. 1, pp. 47–55, 2015.
  • [54] Y. Lester, T. Yacob, I. Morrissey, and K. G. Linden, “Can We Treat Hydraulic Fracturing Flowback with a Conventional Biological Process? The Case of Guar Gum,” Environmental Science & Technology Letters, vol. 1, no. 1, pp. 133–136, Dec. 2013.
  • [55] R. Racharaks, X. Ge, and Y. Li, “Cultivation of marine microalgae using shale gas flowback water and anaerobic digestion effluent as the cultivation medium,” Bioresource Technology, vol. 191, pp. 146–156, 2015.

Kaya Gazı Ekstraksiyonu Ve Kaya Gazı Atıksuyunun Arıtımı

Year 2019, Volume: 7 Issue: 1, 106 - 114, 15.01.2019
https://doi.org/10.21541/apjes.411745

Abstract

Günümüzde kaya gazı yeni bir
enerji kaynağı olarak ele alınmakta ve kaya gazı ekstraksiyonuna yönelik
araştırmalar tüm dünyada hız kesmeden devam etmektedir. Düşey ve yatay sondajın
birlikte kullanıldığı ekstraksiyon çalışmalarında kaya gazının açığa
çıkarılabilmesi için kaya formlarına yüksek hacimlerde basınçlı su enjekte
edilmektedir.  Kaya formlarına enjekte
edilen suyun geri çekilmesi ile kullanılan suyun yaklaşık %10’u ila %80’i
atıksu olarak karşımıza çıkmaktadır. Oluşacak atıksu hacmini minimize edebilmek
için kaya gazı atıksuyunun ön arıtımı yapılarak ekstraksiyon çalışmalarında
yeniden kullanımı son derece önemlidir. 
Diğer yandan kaya gazı atıksuyu yüksek miktarlarda toplam çözünmüş katı
madde, ağır metal, hidrokarbon ve organik madde içerir ve bu nedenle atıksuyun
deşarj edilmeden önce arıtılması gerekmektedir. Bu derleme çalışmasında kaya
gazı ekstraksiyonunda kullanılan yöntemler ve ekstraksiyon esnasında üretilen
atıksuyun özellikleri ve arıtım metodları irdelenmiştir. Kaya gazı atıksuyunun
mekanik buhar kompresyonu ile buharlaştırılması, membran distilasyonu, ters ozmos,
ileri ozmos, ileri kimyasal arıtma yöntemleri ve biyolojik arıtma yöntemleri
ile arıtılabilirliği araştırılmıştır.  

References

  • [1] “Key World Energy Statistics 2012,” Key World Energy Statistics, 2013.
  • [2] S. Pacala, “Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies,” Science, vol. 305, no. 5686, pp. 968–972, 2004.
  • [3] M. Melikoglu, “Vision 2023: Forecasting Turkeys natural gas demand between 2013 and 2030,” Renewable and Sustainable Energy Reviews, vol. 22, pp. 393–400, 2013.
  • [4] V. A. Kuuskraa, “Natural Gas Resources, Unconventional,” Encyclopedia of Energy, pp. 257–272, 2004.
  • [5] Q. Wang, X. Chen, A. N. Jha, and H. Rogers, “Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States,” Renewable and Sustainable Energy Reviews, vol. 30, pp. 1–28, 2014.
  • [6] S. D. Golding, C. J. Boreham, and J. S. Esterle, “Stable isotope geochemistry of coal bed and shale gas and related production waters: A review,” International Journal of Coal Geology, vol. 120, pp. 24–40, 2013.
  • [7] M. Melikoglu, “Shale gas: Analysis of its role in the global energy market,” Renewable and Sustainable Energy Reviews, vol. 37, pp. 460–468, 2014.
  • [8] D. M. Kargbo, R. G. Wilhelm, and D. J. Campbell, “Natural Gas Plays in the Marcellus Shale: Challenges and Potential Opportunities,” Environmental Science & Technology, vol. 44, no. 15, pp. 5679–5684, 2010.
  • [9] R. A. Kerr, “Natural Gas From Shale Bursts Onto the Scene,” Science, vol. 328, no. 5986, pp. 1624–1626, 2010.
  • [10] “Technically Recoverable Shale Oil and Shale Gas Resources.” [Online]. Available: https://www.bing.com/cr?IG=A691EDAF1780442E86B1EDF22E3984CE&CID=3660B06AF0D26492028FBBA9F17D6598&rd=1&h=Qv8EDLVknr03YA3v-iEi1bj89d6oJ371cJEWh4_EL-w&v=1&r=https://www.eia.gov/analysis/studies/worldshalegas/pdf/overview.pdf&p=DevEx,5068.1. [Accessed: 31-Mar-2018].
  • [11] K.A.N. Bozdogan, T. Erten, Y. H. Iztan, A. Cubukcu, M. G. D. Korucu, "Anadolu Diyarbakir Bolgesi Paleozoyik birimlerin stratigrafisi ve petrol potansiyeli", Turkiye 10. Petrol Kongresi ve Sergisi Bildiri Kitabi. Ankara, 125-139, 1994.
  • [12] A. Aydemir, “Comparison of Mississippian Barnett Shale, Northern-Central Texas, USA and Silurian Dadas Formation in Southeast Turkey,” Journal of Petroleum Science and Engineering, vol. 80, no. 1, pp. 81–93, 2011.
  • [13] “Turkey's shale gas hopes draw growing interest,” Reuters, 18-Feb-2013. [Online]. Available: https://www.reuters.com/article/turkey-shale/turkeys-shale-gas-hopes-draw-growing-interest-idUSL6N0BI8CQ20130218. [Accessed: 31-Mar-2018].
  • [14] S. Jenner and A. J. Lamadrid, “Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States,” Energy Policy, vol. 53, pp. 442–453, 2013.
  • [15] D. L. Shaffer, L. H. A. Chavez, M. Ben-Sasson, S. R.-V. Castrillón, N. Y. Yip, and M. Elimelech, “Desalination and Reuse of High-Salinity Shale Gas Produced Water: Drivers, Technologies, and Future Directions,” Environmental Science & Technology, vol. 47, no. 17, pp. 9569–9583, 2013.
  • [16] “Environmental Stewardship: Lessons for European ...” [Online]. Available: https://www.bing.com/cr?IG=DF1182DA445640A38C3DA1EBA9CFFE6A&CID=3225D5F6E4106A0E15B8DE35E5BF6BDF&rd=1&h=hONIQGgNKHo13g4AX6CkTrmIiq4mfiet6K7aR5QAsiM&v=1&r=https://www.onepetro.org/journal-paper/SPE-167714-PA&p=DevEx,5066.1. [Accessed: 31-Mar-2018].
  • [17] R. D. Vidic, S. L. Brantley, J. M. Vandenbossche, D. Yoxtheimer, and J. D. Abad, “Impact of Shale Gas Development on Regional Water Quality,” Science, vol. 340, no. 6134, pp. 1235009–1235009, 2013.
  • [18] E. Barbot, N. Vidic, K. Gregory, and R. Vidic, “Spatial and Temporal Correlation of Water Quality Parameters of Produced Waters from Devonian-Age Shale following Hydraulic Fracturing,” Wastewater and Shale Formation Development, pp. 41–59, 2015.
  • [19] M. A. Engle and E. L. Rowan, “Geochemical evolution of produced waters from hydraulic fracturing of the Marcellus Shale, northern Appalachian Basin: A multivariate compositional data analysis approach,” International Journal of Coal Geology, vol. 126, pp. 45–56, 2014.
  • [20] T. Colborn, C. Kwiatkowski, K. Schultz, and M. Bachran, “Natural Gas Operations from a Public Health Perspective,” Human and Ecological Risk Assessment: An International Journal, vol. 17, no. 5, pp. 1039–1056, 2011.
  • [21] J. M. Estrada and R. Bhamidimarri, “A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing,” Fuel, vol. 182, pp. 292–303, 2016.
  • [22] K. J. Ferrar, D. R. Michanowicz, C. L. Christen, N. Mulcahy, S. L. Malone, and R. K. Sharma, “Assessment of Effluent Contaminants from Three Facilities Discharging Marcellus Shale Wastewater to Surface Waters in Pennsylvania,” Environmental Science & Technology, vol. 47, no. 7, pp. 3472–3481, 2013.
  • [23] M. Bădileanu, M. F. Bulearcă, C. Russu, M.-S. Muscalu, C. Neagu, R. Bozga, C. Sima, L. I. Georgescu, and D. N. Băleanu, “Shale Gas Exploitation– Economic Effects and Risks,” Procedia Economics and Finance, vol. 22, pp. 95–104, 2015.
  • [24] “Shale gas – Information on hydraulic fracturing (‘fracking’).” [Online]. Available: http://www.bing.com/cr?IG=4B8B40AB40454F339537A3D7516C16AD&CID=2450DC54C03E6C800D31D797C1916D17&rd=1&h=AGDDyjVcz_2erblUIeC_8SKdq1sp7Hr5TWIGhyIu-YA&v=1&r=http://www.eawag.ch/fileadmin/Domain1/Beratung/Beratung_Wissenstransfer/Publ_Praxis/Factsheets/fs_fracking_apr2013.pdf&p=DevEx,5260.1. [Accessed: 31-Mar-2018].
  • [25] C. Wang, F. Wang, H. Du, and X. Zhang, “Is China really ready for shale gas revolution—Re-evaluating shale gas challenges,” Environmental Science & Policy, vol. 39, pp. 49–55, 2014.
  • [26] B. G. Rahm, J. Bates, L. R. Bertoia, A. E. Galford, D. Yoxtheimer, and S. Riha, “Wastewater Management and Marcellus Shale Gas Development: Trends, Drivers, and Planning Implications,” SSRN Electronic Journal, 2012.
  • [27] “Marcellus Shale Post-Frac Flowback Waters - Where is All ...” [Online]. Available: https://www.bing.com/cr?IG=6C6DE3C8EACB4DD7B2C979E303471DFE&CID=178019C9511F644E0599120A50B0650B&rd=1&h=_5JAY0W82FUSCDeUR91OSkCm8svIHSQ9hUaHue4CLa4&v=1&r=https://www.onepetro.org/conference-paper/SPE-125740-MS&p=DevEx,5067.1. [Accessed: 31-Mar-2018].
  • [28] K. B. Gregory, R. D. Vidic, and D. A. Dzombak, “Water Management Challenges Associated with the Production of Shale Gas by Hydraulic Fracturing,” Elements, vol. 7, no. 3, pp. 181–186, Jan. 2011.
  • [29] O. Olsson, D. Weichgrebe, and K.-H. Rosenwinkel, “Hydraulic fracturing wastewater in Germany: composition, treatment, concerns,” Environmental Earth Sciences, vol. 70, no. 8, pp. 3895–3906, 2013.
  • [30] J. S. Harkness, G. S. Dwyer, N. R. Warner, K. M. Parker, W. A. Mitch, and A. Vengosh, “Iodide, Bromide, and Ammonium in Hydraulic Fracturing and Oil and Gas Wastewaters: Environmental Implications,” Environmental Science & Technology, vol. 49, no. 3, pp. 1955–1963, 2015.
  • [31] Q. Jiang, J. Rentschler, R. Perrone, and K. Liu, “Application of ceramic membrane and ion-exchange for the treatment of the flowback water from Marcellus shale gas production,” Journal of Membrane Science, vol. 431, pp. 55–61, 2013.
  • [32] “Sampling and Analysis of Water Streams Associated with the ...” [Online]. Available: http://www.bing.com/cr?IG=97E7AB4822B64107BF188C0DB4F68A32&CID=1A4C068249046E6803790D4148AB6FB6&rd=1&h=l_LdLXTAygJrSDbmC52qvXCFALFqL3iln1YQTZdBoP4&v=1&r=http://energyindepth.org/wp-content/uploads/marcellus/2012/11/MSCommission-Report.pdf&p=DevEx,5068.1. [Accessed: 31-Mar-2018].
  • [33] S. B. Kausley, C. P. Malhotra, and A. B. Pandit, “Treatment and reuse of shale gas wastewater: Electrocoagulation system for enhanced removal of organic contamination and scale causing divalent cations,” Journal of Water Process Engineering, vol. 16, pp. 149–162, 2017.
  • [34] R. S. Rodriguez and D. J. Soeder, “Evolving water management practices in shale oil & gas development,” Journal of Unconventional Oil and Gas Resources, vol. 10, pp. 18–24, 2015.
  • [35] G. L. Theodori, A. Luloff, F. K. Willits, and D. B. Burnett, “Hydraulic fracturing and the management, disposal, and reuse of frac flowback waters: Views from the public in the Marcellus Shale,” Energy Research & Social Science, vol. 2, pp. 66–74, 2014.
  • [36] “Produced Water Reuse and Recycling Challenges and Opportunities Across Major Shale Plays,” EPA, 26-Oct-2017. [Online]. Available: https://www.epa.gov/hfstudy/produced-water-reuse-and-recycling-challenges-and-opportunities-across-major-shale-plays. [Accessed: 31-Mar-2018].
  • [37] M. B. Adams, “Land Application of Hydrofracturing Fluids Damages a Deciduous Forest Stand in West Virginia,” Journal of Environment Quality, vol. 40, no. 4, p. 1340, 2011.
  • [38] F.R. Ahmadun, A. Pendashteh, L.C. Abdullah, D.R.A. Biak, S.S. Madaeni, and Z.Z. Abidin, "Review of technologies for oil and gas produced water treatment", Journal of Hazardous Materials, vol. 170, p. 530-551, 2009.
  • [39] “Cost Effective Recovery of Low-TDS Frac Flowback Water for ...” [Online]. Available: https://www.bing.com/cr?IG=22C3AB22F33840AB9B9CD34D5840DBDF&CID=1BEDBD4CCD136A72153BB68FCCBC6B42&rd=1&h=qQf4Tr9pyv3xXPjjdZPkyUihtFbZWlfHdPBsYH30rOQ&v=1&r=https://www.netl.doe.gov/file library/Research/oil-gas/FE0000784_FinalReport.pdf&p=DevEx,5067.1. [Accessed: 31-Mar-2018].
  • [40] E. T. Igunnu and G. Z. Chen, “Produced water treatment technologies,” International Journal of Low-Carbon Technologies, vol. 9, no. 3, pp. 157–177, Apr. 2012.
  • [41] J. Minier-Matar, A. Hussain, A. Janson, and S. Adham, “Treatment of Produced Water from Unconventional Resources by Membrane Distillation,” International Petroleum Technology Conference, 2014.
  • [42] A. Alkhudhiri, N. Darwish, and N. Hilal, “Membrane distillation: A comprehensive review,” Desalination, vol. 287, pp. 2–18, 2012.
  • [43] F. Macedonio, A. Ali, T. Poerio, E. El-Sayed, E. Drioli, and M. Abdel-Jawad, “Direct contact membrane distillation for treatment of oilfield produced water,” Separation and Purification Technology, vol. 126, pp. 69–81, 2014.
  • [44] D. L. Shaffer, J. R. Werber, H. Jaramillo, S. Lin, and M. Elimelech, “Forward osmosis: Where are we now?,” Desalination, vol. 356, pp. 271–284, 2015.
  • [45] B. D. Coday, P. Xu, E. G. Beaudry, J. Herron, K. Lampi, N. T. Hancock, and T. Y. Cath, “The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams,” Desalination, vol. 333, no. 1, pp. 23–35, 2014.
  • [46] T. Cath, A. Childress, and M. Elimelech, “Forward osmosis: Principles, applications, and recent developments,” Journal of Membrane Science, vol. 281, no. 1-2, pp. 70–87, 2006.
  • [47] K. L. Hickenbottom, N. T. Hancock, N. R. Hutchings, E. W. Appleton, E. G. Beaudry, P. Xu, and T. Y. Cath, “Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations,” Desalination, vol. 312, pp. 60–66, 2013.
  • [48] G. Chen, Z. Wang, L. D. Nghiem, X.-M. Li, M. Xie, B. Zhao, M. Zhang, J. Song, and T. He, “Treatment of shale gas drilling flowback fluids (SGDFs) by forward osmosis: Membrane fouling and mitigation,” Desalination, vol. 366, pp. 113–120, 2015.
  • [49] A. Butkovskyi, A.-H. Faber, Y. Wang, K. Grolle, R. Hofman-Caris, H. Bruning, A. P. V. Wezel, and H. H. Rijnaarts, “Removal of organic compounds from shale gas flowback water,” Water Research, vol. 138, pp. 47–55, 2018.
  • [50] H. S. Erkan, N. B. Turan, and G. O. Engin, “Wastewater treatment from shale gas operation by Fenton process: a statistical optimization,” Desalination And Water Treatment, vol. 70, pp. 125–133, 2017.
  • [51] N. B. Turan, H. S. Erkan, and G. O. Engin, “The investigation of shale gas wastewater treatment by electro-Fenton process: Statistical optimization of operational parameters,” Process Safety and Environmental Protection, vol. 109, pp. 203–213, 2017.
  • [52] Z. A. Stoll, C. Forrestal, Z. J. Ren, and P. Xu, “Shale gas produced water treatment using innovative microbial capacitive desalination cell,” Journal of Hazardous Materials, vol. 283, pp. 847–855, 2015.
  • [53] C. Forrestal, Z. Stoll, P. Xu, and Z. J. Ren, “Microbial capacitive desalination for integrated organic matter and salt removal and energy production from unconventional natural gas produced water,” Environmental Science: Water Research & Technology, vol. 1, no. 1, pp. 47–55, 2015.
  • [54] Y. Lester, T. Yacob, I. Morrissey, and K. G. Linden, “Can We Treat Hydraulic Fracturing Flowback with a Conventional Biological Process? The Case of Guar Gum,” Environmental Science & Technology Letters, vol. 1, no. 1, pp. 133–136, Dec. 2013.
  • [55] R. Racharaks, X. Ge, and Y. Li, “Cultivation of marine microalgae using shale gas flowback water and anaerobic digestion effluent as the cultivation medium,” Bioresource Technology, vol. 191, pp. 146–156, 2015.
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Hanife Sarı Erkan

Nouha Bakaraki Turan This is me

Güleda Önkal Engin This is me

Publication Date January 15, 2019
Submission Date April 2, 2018
Published in Issue Year 2019 Volume: 7 Issue: 1

Cite

IEEE H. Sarı Erkan, N. Bakaraki Turan, and G. Önkal Engin, “Kaya Gazı Ekstraksiyonu Ve Kaya Gazı Atıksuyunun Arıtımı”, APJES, vol. 7, no. 1, pp. 106–114, 2019, doi: 10.21541/apjes.411745.