Araştırma Makalesi
BibTex RIS Kaynak Göster

The Adsorptive Removal of Arsenic And Manganese from Aqueous Solution by Natural and Modified Sepiolite

Yıl 2019, Cilt: 7 Sayı: 1, 127 - 139, 15.01.2019
https://doi.org/10.21541/apjes.413488

Öz

The natural sepiolite clay mineral was
obtained from General Directorate of Mineral Research and Exploration (MTA) of
Turkey and modified with 2.5 M of NaOH. The natural (SP) and modified (Na-SP)
sepiolite samples were characterized by XRD, N2 adsorption-desorption, FTIR, SEM-EDS
and NH3-TPD.
The treatment of the
sepiolite with NaOH led to a significant desilication and decationization of
the SP. The alkali treatment with NaOH caused solution of silicon and cations,
resulting in an increase in its average pore diameter and a decrease in its
surface area from
187. 8 m2 g-1
to 7.1  m2
g-1. In addition, a
number of weak and medium acid centres of SP was  decreased while a number of strong acid
centres was increased.    The maximum As(III) and As(V) removal with the SP was
achieved at an initial pH of 1.5, respectively; ca. 8.9 mg g-1  and 26.8 mg g-1
The
maximum removal of As(III) and As(V) with Na-SP was achieved at an initial pH
of 5.0; ca. 46.7 mg g-1 and  
3
5.9 mg g-1, respectively. The maximum Mn(II)
removal with SP was 5.2 mg g-1. Treatment of SP with NaOH increased
its the arsenic adsorption capacity up to four times, which is comparable to
iron-containing sepiolite samples and bimetallic oxides.
While the Langmuir isotherm fitted well with results
obtained from the As(V) with SP and As(III) with Na-SP, the Freundlich isotherm
model was more appropriate for the results obtained from As(V) with  Na-SP and from Mn(II) of SP.
The pseudo-second-order kinetic model for the
adsorption of arsenic and manganese on natural and modified sepiolite fitted
well
.

Kaynakça

  • [1] A. Alvarez, “Sepiolite: Properties and Uses,” Dev. Sedimentol., vol. 37, no. C, pp. 253–287, 1984. [2] K. Brauner and A. Preisinger, “Struktur und Entstehung des Sepioliths,” Tschermaks Mineral. und Petrogr. Mitteilungen, vol. 6, no. 1–2, pp. 120–140, 1956. [3] J. L. Sotelo, G. Ovejero, A. Rodríguez, S. Álvarez, and J. García, “Study of natural clay adsorbent sepiolite for the removal of caffeine from aqueous solutions: Batch and fixed-bed column operation,” Water. Air. Soil Pollut., vol. 224, no. 3, 2013. [4] S. Balci and Y. Dinçel, “Ammonium ion adsorption with sepiolite: Use of transient uptake method,” Chem. Eng. Process., vol. 41, no. 1, pp. 79–85, 2002. [5] E. Álvarez-Ayuso and A. García-Sánchez, “Sepiolite as a feasible soil additive for the immobilization of cadmium and zinc,” Sci. Total Environ., vol. 305, no. 1–3, pp. 1–12, 2003. [6] N. Bektas, B. A. Agim, and S. Kara, “Kinetic and equilibrium studies in removing lead ions from aqueous solutions by natural sepiolite,” J. Hazard. Mater., vol. 112, no. 1–2, pp. 115–122, 2004. [7] M. F. Brigatti, L. Medici, and L. Poppi, “Sepiolite and industrial waste-water purification: Removal of Zn2+ and Pb2+ from aqueous solutions,” Appl. Clay Sci., vol. 11, no. 1, pp. 43–54, 1996. [8] M. F. Brigatti, C. Lugli, and L. Poppi, “Kinetics of heavy-metal removal and recovery in sepiolite,” in Applied Clay Science, 2000, vol. 16, no. 1–2, pp. 45–57. [9] M. Kara, H. Yuzer, E. Sabah, and M. S. Celik, “Adsorption of cobalt from aqueous solutions onto sepiolite,” Water Res., vol. 37, no. 1, pp. 224–232, 2003. [10] S. Kocaoba, “Adsorption of Cd(II), Cr(III) and Mn(II) on natural sepiolite,” Desalination, vol. 244, no. 1–3, pp. 24–30, 2009. [11] S. Lazarević, I. Janković-Častvan, D. Jovanović, S. Milonjić, D. Janaćković, and R. Petrović, “Adsorption of Pb2+, Cd2+ and Sr2+ ions onto natural and acid-activated sepiolites,” Appl. Clay Sci., vol. 37, no. 1–2, pp. 47–57, 2007. [12] V. Marjanović, S. Lazarević, I. Janković-Častvan, B. Potkonjak, D. Janaćković, and R. Petrović, “Chromium (VI) removal from aqueous solutions using mercaptosilane functionalized sepiolites,” Chem. Eng. J., vol. 166, no. 1, pp. 198–206, 2011. [13] L. I. Vico, “Acid-base behaviour and Cu2+ and Zn2+ complexation properties of the sepiolite/water interface,” Chem. Geol., vol. 198, no. 3–4, pp. 213–222, 2003. [14] D. L. Guerra, A. C. Batista, P. C. Corrêa da costa, R. R. Viana, and C. Airoldi, “Adsorption of arsenic ions on Brazilian sepiolite: Effect of contact time, pH, concentration, and calorimetric investigation,” J. Colloid Interface Sci., vol. 346, no. 1, pp. 178–187, 2010. [15] N. Ilic, S. Lazarevic, V. Rajakovic-Ognjanovic, L. Rajakovic, D. Janackovic, and R. Petrovic, “The sorption of inorganic arsenic on modified sepiolite: Effect of hydrated iron(III)-oxide,” J. Serbian Chem. Soc., vol. 79, no. 7, pp. 815–828, 2014. [16] M. Bissen and F. H. Frimmel, “Arsenic - A review. Part I: Occurrence, toxicity, speciation, mobility,” Acta Hydrochim. Hydrobiol., vol. 31, no. 1, pp. 9–18, 2003. [17] N. E. Korte and Q. Fernando, “A review of arsenic (III) in groundwater,” Crit. Rev. Environ. Control, vol. 21, no. 1, pp. 1–39, 1991. [18] P. Mondal, C. B. Majumder, and B. Mohanty, “Laboratory based approaches for arsenic remediation from contaminated water: Recent developments,” J. Hazard. Mater., vol. 137, no. 1, pp. 464–479, 2006. [19] H. Bessbousse, T. Rhlalou, J. F. Verchère, and L. Lebrun, “Removal of heavy metal ions from aqueous solutions by filtration with a novel complexing membrane containing poly(ethyleneimine) in a poly(vinyl alcohol) matrix,” J. Memb. Sci., vol. 307, no. 2, pp. 249–259, 2008. [20] M. J. González-Muñoz, M. A. Rodríguez, S. Luque, and J. R. Álvarez, “Recovery of heavy metals from metal industry waste waters by chemical precipitation and nanofiltration,” Desalination, vol. 200, no. 1–3, pp. 742–744, 2006. [21] C. G. Passos et al., “Use of statistical design of experiments to evaluate the sorption capacity of 7-amine-4-azaheptylsilica and 10-amine- 4-azadecylsilica for Cu(II), Pb(II), and Fe(III) adsorption,” J. Colloid Interface Sci., vol. 302, no. 2, pp. 396–407, 2006. [22] O. S. Amuda, A. A. Giwa, and I. A. Bello, “Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon,” Biochem. Eng. J., vol. 36, no. 2, pp. 174–181, 2007. [23] R. Kiefer, A. I. Kalinitchev, and W. H. Höll, “Column performance of ion exchange resins with aminophosphonate functional groups for elimination of heavy metals,” React. Funct. Polym., vol. 67, no. 12 SPEC. ISS., pp. 1421–1432, 2007. [24] S. Babel, “Low-cost adsorbents for heavy metals uptake from contaminated water: a review,” J. Hazard. Mater., vol. 97, no. 1–3, pp. 219–243, 2003. [25] A. Ates, “Role of modification of natural zeolite in removal of manganese from aqueous solutions,” Powder Technol., vol. 264, pp. 86–95, 2014. [26] X. jiang Hu et al., “Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics,” J. Hazard. Mater., vol. 185, no. 1, pp. 306–314, 2011. [27] Y. S. Ho and G. McKay, “The kinetics of sorption of divalent metal ions onto sphagnum moss peat,” Water Res., vol. 34, no. 3, pp. 735–742, 2000. [28] M. Ghasemi, M. Zeinaly Khosroshahy, A. Bavand Abbasabadi, N. Ghasemi, H. Javadian, and M. Fattahi, “Microwave-assisted functionalization of Rosa Canina-L fruits activated carbon with tetraethylenepentamine and its adsorption behavior toward Ni(II) in aqueous solution: Kinetic, equilibrium and thermodynamic studies,” Powder Technol., vol. 274, pp. 362–371, 2015. [29] E. Malkoc and Y. Nuhoglu, “Potential of tea factory waste for chromium(VI) removal from aqueous solutions: Thermodynamic and kinetic studies,” Sep. Purif. Technol., vol. 54, no. 3, pp. 291–298, 2007. [30] S. Chen, Q. Yue, B. Gao, Q. Li, and X. Xu, “Removal of Cr(VI) from aqueous solution using modified corn stalks: Characteristic, equilibrium, kinetic and thermodynamic study,” Chem. Eng. J., vol. 168, no. 2, pp. 909–917, 2011. [31] G. W. Brindley, “Identification of Clay Minerals by X-ray Diffraction Analysis,” Clays Clay Miner., vol. 1, no. 1, pp. 119–129, 1952. [32] S. J. Kang, K. Egashira, and A. Yoshida, “Transformation of a low-grade Korean natural zeolite to high cation exchanger by hydrothermal reaction with or without fusion with sodium hydroxide,” Appl. Clay Sci., vol. 13, no. 2, pp. 117–135, 1998. [33] Y. Li, S. Liu, Z. Zhang, S. Xie, X. Zhu, and L. Xu, “Aromatization and isomerization of 1-hexene over alkali-treated HZSM-5 zeolites: Improved reaction stability,” Appl. Catal. A Gen., vol. 338, no. 1–2, pp. 100–113, 2008. [34] I. Melián-Cabrera, S. Espinosa, C. Mentruit, F. Kapteijn, and J. A. Moulijn, “Alkaline leaching for synthesis of improved Fe-ZSM5 catalysts,” Catal. Commun., vol. 7, no. 2, pp. 100–103, 2006. [35] I. Melián-Cabrera, S. Espinosa, J. C. Groen, B. V. D. Linden, F. Kapteijn, and J. A. Moulijn, “Utilizing full-exchange capacity of zeolites by alkaline leaching: Preparation of Fe-ZSM5 and application in N2O decomposition,” J. Catal., vol. 238, no. 2, pp. 250–259, 2006. [36] J. Jänchen, R. V. Morris, D. L. Bish, M. Janssen, and U. Hellwig, “The H2O and CO2adsorption properties of phyllosilicate-poor palagonitic dust and smectites under martian environmental conditions,” Icarus, vol. 200, no. 2, pp. 463–467, 2009. [37] F. R. Cannings, “An infrared study of hydroxyl groups on sepiolite,” Journal of Physical Chemistry, vol. 72, no. 3. pp. 1072–1074, 1968. [38] C. Serna, J. L. Ahlrichs, and J. M. Serratosa, “Folding in sepiolite crystals,” Clays Clay Miner., vol. 23, no. 6, pp. 452–457, 1975. [39] Y. T. Kim, K. D. Jung, and E. D. Park, “Gas-phase dehydration of glycerol over silica-alumina catalysts,” Appl. Catal. B Environ., vol. 107, no. 1–2, pp. 177–187, 2011. [40] G. L. Woolery, G. H. Kuehl, H. C. Timken, A. W. Chester, and J. C. Vartuli, “On the nature of framework Brønsted and Lewis acid sites in ZSM-5,” Zeolites, vol. 19, no. 4, pp. 288–296, 1997. [41] L. L??, L. Chen, W. Shao, and F. Luo, “Equilibrium and kinetic modeling of Pb(II) biosorption by a chemically modified orange peel containing Cyanex 272,” J. Chem. Eng. Data, vol. 55, no. 10, pp. 4147–4153, 2010. [42] Y. Tao, H. Kanoh, and K. Kaneko, “Developments and structures of mesopores in alkaline-treated ZSM-5 zeolites,” Adsorption, vol. 12, no. 5–6, pp. 309–316, 2006. [43] T. A. Khan, S. A. Chaudhry, and I. Ali, “Equilibrium uptake, isotherm and kinetic studies of Cd(II) adsorption onto iron oxide activated red mud from aqueous solution,” J. Mol. Liq., vol. 202, pp. 165–175, 2015. [44] V. O. Leone et al., “Adsorption of diclofenac on a magnetic adsorbent based on maghemite: experimental and theoretical studies,” New J. Chem., vol. 42, no. 1, pp. 437–449, 2018. [45] Y. S. Ho and G. McKay, “Pseudo-second order model for sorption processes,” Process Biochem., vol. 34, no. 5, pp. 451–465, 1999. [46] Y. Tae, K. Jung, and E. Duck, “Microporous and Mesoporous Materials Gas-phase dehydration of glycerol over ZSM-5 catalysts,” Microporous Mesoporous Mater., vol. 131, no. 1–3, pp. 28–36, 2010. [47] D. Esquivel, A. J. Cruz-Cabeza, C. Jiménez-Sanchidrián, and F. J. Romero-Salguero, “Local environment and acidity in alkaline and alkaline-earth exchanged ?? zeolite: Structural analysis and catalytic properties,” Microporous Mesoporous Mater., vol. 142, no. 2–3, pp. 672–679, 2011. [48] A. Ates and G. Akg??l, “Modification of natural zeolite with NaOH for removal of manganese in drinking water,” Powder Technol., vol. 287, pp. 285–291, 2016. [49] N. Bektas, S. Aydin, and M. S. Oncel, “The Adsorption of Arsenic Ions Using Beidellite, Zeolite, and Sepiolite Clays: A Study of Kinetic, Equilibrium and Thermodynamics,” Sep. Sci. Technol., vol. 46, no. 6, pp. 1005–1016, 2011. [50] M. D. Öztel, F. Akbal, and L. Altaş, “Arsenite removal by adsorption onto iron oxide-coated pumice and sepiolite,” Environ. Earth Sci., vol. 73, no. 8, pp. 4461–4471, 2015. [51] S. A. Alex, C. Lomenech, C. Hurel, and N. Marmier, “Adsorption of nickel and arsenic from aqueous solution on natural sepiolite,” Int. J. Nanotechnol., vol. 9, no. 3/4/5/6/7, p. 204, 2012. [52] N. Tian et al., “Well-dispersed magnetic iron oxide nanocrystals on sepiolite nanofibers for arsenic removal,” RSC Adv., vol. 5, no. 32, pp. 25236–25243, 2015. [53] K. Gupta, T. Basu, and U. C. Ghosh, “Sorption characteristics of arsenic(V) for removal from water using agglomerated nanostructure iron(III)-zirconium(IV) bimetal mixed oxide,” J. Chem. Eng. Data, vol. 54, no. 8, pp. 2222–2228, 2009. [54] J. Hlavay and K. Polyak, “Determination of surface properties of iron hydroxide-coated alumina adsorbent prepared for removal of arsenic from drinking water.,” J. Colloid Interface Sci., vol. 284, no. 1, pp. 71–77, 2005. [55] Z. Ren, G. Zhang, and J. Paul Chen, “Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent,” J. Colloid Interface Sci., vol. 358, no. 1, pp. 230–237, 2011. [56] G. Zhang, J. Qu, H. Liu, R. Liu, and R. Wu, “Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal,” Water Res., vol. 41, no. 9, pp. 1921–1928, 2007. [57] K. Zhang, V. Dwivedi, C. Chi, and J. Wu, “Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water,” J. Hazard. Mater., vol. 182, no. 1–3, pp. 162–168, 2010.

Doğal ve Modifiye Edilmiş Sepiyolit ile Sulu Çözeltilerden Arsenik ve Manganın Adsorpsiyonu ile Ayrımı

Yıl 2019, Cilt: 7 Sayı: 1, 127 - 139, 15.01.2019
https://doi.org/10.21541/apjes.413488

Öz

Doğal
sepiyolit kil minerali Türkiye’nin Maden Tetkik ve Arama (MTA)   kurumundan sağlanmış ve 2.5 M NaOH ile modifiye
edilmiştir. Doğal  (SP) ve modifiye
edilmiş sepiyolit  (Na-SP) örnekleri XRD,
N2 adsorpsiyonu-desorpsiyonu, FTIR, SEM-EDS ve NH3-TPD
ile karakterize edilmiştir. NaOH ile sepiyolitin modifikasyonu, sepiyolitin
önemli miktarda desilikasyonuna ve dekatyonizasyonuna neden olmuştur.
Sepiyolitin alkali muamelesi ile silisyum ve magnezyum çözünmesi sonucu
sepiyolitin ortalama gözenek çapında artış ve yüzey alanında 187. 8 m2 g-1’den
7.1 m2g-1‘a azalma belirlenmiştir. Ayrıca, zayıf ve orta
asit merkezleri azalırken, güçlü asit merkezleri artmıştır.   SP ile maksimum As(III) ve As(V) ayrımı
pH=1.5’de sağlanmış olup,  değerler
yaklaşık olarak sıra ile 8.9 mg g-1 ve
26.8 mg g-1’dır.   Na-SP
örneklerinde maksimum
As(III) ve As(V) ayrımı
pH=5.0’de sağlanmış olup, onların miktarı ise sıra ile 46.7 mg g-1 ve 35.9 mg g-1’dır. 
Doğal sepiyolitin maksimum Mn(II) uzaklaştırma miktarı ise 5.2 mg g-1’dır.  Sepiyolitin NaOH ile modifikasyonu ile
arsenik adsorpsiyon kapasitesi dört kata kadar artmış olup, bu değer demir
içeren sepiyolit örnekleri ve bimetalik oksitler ile karşılaştırılabilirdir.
Langmuir izotermleri SP ile As(V)  ve Na-SP ile As(III) ayrımı sonuçlarına
uyumlu olmasına karşılık Freundlich izoterm modeli SP ile Mn(II) ve Na-SP ile
As(V) uzaklaştırmasında uygunluk göstermiştir. Doğal ve modifiye edilmiş
sepiyolit ile arsenik ve mangan adsorpsiyonu için kaydırılmış ikinci mertebeden
kinetik model iyi uyum sağlamaktadır. 

Kaynakça

  • [1] A. Alvarez, “Sepiolite: Properties and Uses,” Dev. Sedimentol., vol. 37, no. C, pp. 253–287, 1984. [2] K. Brauner and A. Preisinger, “Struktur und Entstehung des Sepioliths,” Tschermaks Mineral. und Petrogr. Mitteilungen, vol. 6, no. 1–2, pp. 120–140, 1956. [3] J. L. Sotelo, G. Ovejero, A. Rodríguez, S. Álvarez, and J. García, “Study of natural clay adsorbent sepiolite for the removal of caffeine from aqueous solutions: Batch and fixed-bed column operation,” Water. Air. Soil Pollut., vol. 224, no. 3, 2013. [4] S. Balci and Y. Dinçel, “Ammonium ion adsorption with sepiolite: Use of transient uptake method,” Chem. Eng. Process., vol. 41, no. 1, pp. 79–85, 2002. [5] E. Álvarez-Ayuso and A. García-Sánchez, “Sepiolite as a feasible soil additive for the immobilization of cadmium and zinc,” Sci. Total Environ., vol. 305, no. 1–3, pp. 1–12, 2003. [6] N. Bektas, B. A. Agim, and S. Kara, “Kinetic and equilibrium studies in removing lead ions from aqueous solutions by natural sepiolite,” J. Hazard. Mater., vol. 112, no. 1–2, pp. 115–122, 2004. [7] M. F. Brigatti, L. Medici, and L. Poppi, “Sepiolite and industrial waste-water purification: Removal of Zn2+ and Pb2+ from aqueous solutions,” Appl. Clay Sci., vol. 11, no. 1, pp. 43–54, 1996. [8] M. F. Brigatti, C. Lugli, and L. Poppi, “Kinetics of heavy-metal removal and recovery in sepiolite,” in Applied Clay Science, 2000, vol. 16, no. 1–2, pp. 45–57. [9] M. Kara, H. Yuzer, E. Sabah, and M. S. Celik, “Adsorption of cobalt from aqueous solutions onto sepiolite,” Water Res., vol. 37, no. 1, pp. 224–232, 2003. [10] S. Kocaoba, “Adsorption of Cd(II), Cr(III) and Mn(II) on natural sepiolite,” Desalination, vol. 244, no. 1–3, pp. 24–30, 2009. [11] S. Lazarević, I. Janković-Častvan, D. Jovanović, S. Milonjić, D. Janaćković, and R. Petrović, “Adsorption of Pb2+, Cd2+ and Sr2+ ions onto natural and acid-activated sepiolites,” Appl. Clay Sci., vol. 37, no. 1–2, pp. 47–57, 2007. [12] V. Marjanović, S. Lazarević, I. Janković-Častvan, B. Potkonjak, D. Janaćković, and R. Petrović, “Chromium (VI) removal from aqueous solutions using mercaptosilane functionalized sepiolites,” Chem. Eng. J., vol. 166, no. 1, pp. 198–206, 2011. [13] L. I. Vico, “Acid-base behaviour and Cu2+ and Zn2+ complexation properties of the sepiolite/water interface,” Chem. Geol., vol. 198, no. 3–4, pp. 213–222, 2003. [14] D. L. Guerra, A. C. Batista, P. C. Corrêa da costa, R. R. Viana, and C. Airoldi, “Adsorption of arsenic ions on Brazilian sepiolite: Effect of contact time, pH, concentration, and calorimetric investigation,” J. Colloid Interface Sci., vol. 346, no. 1, pp. 178–187, 2010. [15] N. Ilic, S. Lazarevic, V. Rajakovic-Ognjanovic, L. Rajakovic, D. Janackovic, and R. Petrovic, “The sorption of inorganic arsenic on modified sepiolite: Effect of hydrated iron(III)-oxide,” J. Serbian Chem. Soc., vol. 79, no. 7, pp. 815–828, 2014. [16] M. Bissen and F. H. Frimmel, “Arsenic - A review. Part I: Occurrence, toxicity, speciation, mobility,” Acta Hydrochim. Hydrobiol., vol. 31, no. 1, pp. 9–18, 2003. [17] N. E. Korte and Q. Fernando, “A review of arsenic (III) in groundwater,” Crit. Rev. Environ. Control, vol. 21, no. 1, pp. 1–39, 1991. [18] P. Mondal, C. B. Majumder, and B. Mohanty, “Laboratory based approaches for arsenic remediation from contaminated water: Recent developments,” J. Hazard. Mater., vol. 137, no. 1, pp. 464–479, 2006. [19] H. Bessbousse, T. Rhlalou, J. F. Verchère, and L. Lebrun, “Removal of heavy metal ions from aqueous solutions by filtration with a novel complexing membrane containing poly(ethyleneimine) in a poly(vinyl alcohol) matrix,” J. Memb. Sci., vol. 307, no. 2, pp. 249–259, 2008. [20] M. J. González-Muñoz, M. A. Rodríguez, S. Luque, and J. R. Álvarez, “Recovery of heavy metals from metal industry waste waters by chemical precipitation and nanofiltration,” Desalination, vol. 200, no. 1–3, pp. 742–744, 2006. [21] C. G. Passos et al., “Use of statistical design of experiments to evaluate the sorption capacity of 7-amine-4-azaheptylsilica and 10-amine- 4-azadecylsilica for Cu(II), Pb(II), and Fe(III) adsorption,” J. Colloid Interface Sci., vol. 302, no. 2, pp. 396–407, 2006. [22] O. S. Amuda, A. A. Giwa, and I. A. Bello, “Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon,” Biochem. Eng. J., vol. 36, no. 2, pp. 174–181, 2007. [23] R. Kiefer, A. I. Kalinitchev, and W. H. Höll, “Column performance of ion exchange resins with aminophosphonate functional groups for elimination of heavy metals,” React. Funct. Polym., vol. 67, no. 12 SPEC. ISS., pp. 1421–1432, 2007. [24] S. Babel, “Low-cost adsorbents for heavy metals uptake from contaminated water: a review,” J. Hazard. Mater., vol. 97, no. 1–3, pp. 219–243, 2003. [25] A. Ates, “Role of modification of natural zeolite in removal of manganese from aqueous solutions,” Powder Technol., vol. 264, pp. 86–95, 2014. [26] X. jiang Hu et al., “Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics,” J. Hazard. Mater., vol. 185, no. 1, pp. 306–314, 2011. [27] Y. S. Ho and G. McKay, “The kinetics of sorption of divalent metal ions onto sphagnum moss peat,” Water Res., vol. 34, no. 3, pp. 735–742, 2000. [28] M. Ghasemi, M. Zeinaly Khosroshahy, A. Bavand Abbasabadi, N. Ghasemi, H. Javadian, and M. Fattahi, “Microwave-assisted functionalization of Rosa Canina-L fruits activated carbon with tetraethylenepentamine and its adsorption behavior toward Ni(II) in aqueous solution: Kinetic, equilibrium and thermodynamic studies,” Powder Technol., vol. 274, pp. 362–371, 2015. [29] E. Malkoc and Y. Nuhoglu, “Potential of tea factory waste for chromium(VI) removal from aqueous solutions: Thermodynamic and kinetic studies,” Sep. Purif. Technol., vol. 54, no. 3, pp. 291–298, 2007. [30] S. Chen, Q. Yue, B. Gao, Q. Li, and X. Xu, “Removal of Cr(VI) from aqueous solution using modified corn stalks: Characteristic, equilibrium, kinetic and thermodynamic study,” Chem. Eng. J., vol. 168, no. 2, pp. 909–917, 2011. [31] G. W. Brindley, “Identification of Clay Minerals by X-ray Diffraction Analysis,” Clays Clay Miner., vol. 1, no. 1, pp. 119–129, 1952. [32] S. J. Kang, K. Egashira, and A. Yoshida, “Transformation of a low-grade Korean natural zeolite to high cation exchanger by hydrothermal reaction with or without fusion with sodium hydroxide,” Appl. Clay Sci., vol. 13, no. 2, pp. 117–135, 1998. [33] Y. Li, S. Liu, Z. Zhang, S. Xie, X. Zhu, and L. Xu, “Aromatization and isomerization of 1-hexene over alkali-treated HZSM-5 zeolites: Improved reaction stability,” Appl. Catal. A Gen., vol. 338, no. 1–2, pp. 100–113, 2008. [34] I. Melián-Cabrera, S. Espinosa, C. Mentruit, F. Kapteijn, and J. A. Moulijn, “Alkaline leaching for synthesis of improved Fe-ZSM5 catalysts,” Catal. Commun., vol. 7, no. 2, pp. 100–103, 2006. [35] I. Melián-Cabrera, S. Espinosa, J. C. Groen, B. V. D. Linden, F. Kapteijn, and J. A. Moulijn, “Utilizing full-exchange capacity of zeolites by alkaline leaching: Preparation of Fe-ZSM5 and application in N2O decomposition,” J. Catal., vol. 238, no. 2, pp. 250–259, 2006. [36] J. Jänchen, R. V. Morris, D. L. Bish, M. Janssen, and U. Hellwig, “The H2O and CO2adsorption properties of phyllosilicate-poor palagonitic dust and smectites under martian environmental conditions,” Icarus, vol. 200, no. 2, pp. 463–467, 2009. [37] F. R. Cannings, “An infrared study of hydroxyl groups on sepiolite,” Journal of Physical Chemistry, vol. 72, no. 3. pp. 1072–1074, 1968. [38] C. Serna, J. L. Ahlrichs, and J. M. Serratosa, “Folding in sepiolite crystals,” Clays Clay Miner., vol. 23, no. 6, pp. 452–457, 1975. [39] Y. T. Kim, K. D. Jung, and E. D. Park, “Gas-phase dehydration of glycerol over silica-alumina catalysts,” Appl. Catal. B Environ., vol. 107, no. 1–2, pp. 177–187, 2011. [40] G. L. Woolery, G. H. Kuehl, H. C. Timken, A. W. Chester, and J. C. Vartuli, “On the nature of framework Brønsted and Lewis acid sites in ZSM-5,” Zeolites, vol. 19, no. 4, pp. 288–296, 1997. [41] L. L??, L. Chen, W. Shao, and F. Luo, “Equilibrium and kinetic modeling of Pb(II) biosorption by a chemically modified orange peel containing Cyanex 272,” J. Chem. Eng. Data, vol. 55, no. 10, pp. 4147–4153, 2010. [42] Y. Tao, H. Kanoh, and K. Kaneko, “Developments and structures of mesopores in alkaline-treated ZSM-5 zeolites,” Adsorption, vol. 12, no. 5–6, pp. 309–316, 2006. [43] T. A. Khan, S. A. Chaudhry, and I. Ali, “Equilibrium uptake, isotherm and kinetic studies of Cd(II) adsorption onto iron oxide activated red mud from aqueous solution,” J. Mol. Liq., vol. 202, pp. 165–175, 2015. [44] V. O. Leone et al., “Adsorption of diclofenac on a magnetic adsorbent based on maghemite: experimental and theoretical studies,” New J. Chem., vol. 42, no. 1, pp. 437–449, 2018. [45] Y. S. Ho and G. McKay, “Pseudo-second order model for sorption processes,” Process Biochem., vol. 34, no. 5, pp. 451–465, 1999. [46] Y. Tae, K. Jung, and E. Duck, “Microporous and Mesoporous Materials Gas-phase dehydration of glycerol over ZSM-5 catalysts,” Microporous Mesoporous Mater., vol. 131, no. 1–3, pp. 28–36, 2010. [47] D. Esquivel, A. J. Cruz-Cabeza, C. Jiménez-Sanchidrián, and F. J. Romero-Salguero, “Local environment and acidity in alkaline and alkaline-earth exchanged ?? zeolite: Structural analysis and catalytic properties,” Microporous Mesoporous Mater., vol. 142, no. 2–3, pp. 672–679, 2011. [48] A. Ates and G. Akg??l, “Modification of natural zeolite with NaOH for removal of manganese in drinking water,” Powder Technol., vol. 287, pp. 285–291, 2016. [49] N. Bektas, S. Aydin, and M. S. Oncel, “The Adsorption of Arsenic Ions Using Beidellite, Zeolite, and Sepiolite Clays: A Study of Kinetic, Equilibrium and Thermodynamics,” Sep. Sci. Technol., vol. 46, no. 6, pp. 1005–1016, 2011. [50] M. D. Öztel, F. Akbal, and L. Altaş, “Arsenite removal by adsorption onto iron oxide-coated pumice and sepiolite,” Environ. Earth Sci., vol. 73, no. 8, pp. 4461–4471, 2015. [51] S. A. Alex, C. Lomenech, C. Hurel, and N. Marmier, “Adsorption of nickel and arsenic from aqueous solution on natural sepiolite,” Int. J. Nanotechnol., vol. 9, no. 3/4/5/6/7, p. 204, 2012. [52] N. Tian et al., “Well-dispersed magnetic iron oxide nanocrystals on sepiolite nanofibers for arsenic removal,” RSC Adv., vol. 5, no. 32, pp. 25236–25243, 2015. [53] K. Gupta, T. Basu, and U. C. Ghosh, “Sorption characteristics of arsenic(V) for removal from water using agglomerated nanostructure iron(III)-zirconium(IV) bimetal mixed oxide,” J. Chem. Eng. Data, vol. 54, no. 8, pp. 2222–2228, 2009. [54] J. Hlavay and K. Polyak, “Determination of surface properties of iron hydroxide-coated alumina adsorbent prepared for removal of arsenic from drinking water.,” J. Colloid Interface Sci., vol. 284, no. 1, pp. 71–77, 2005. [55] Z. Ren, G. Zhang, and J. Paul Chen, “Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent,” J. Colloid Interface Sci., vol. 358, no. 1, pp. 230–237, 2011. [56] G. Zhang, J. Qu, H. Liu, R. Liu, and R. Wu, “Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal,” Water Res., vol. 41, no. 9, pp. 1921–1928, 2007. [57] K. Zhang, V. Dwivedi, C. Chi, and J. Wu, “Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water,” J. Hazard. Mater., vol. 182, no. 1–3, pp. 162–168, 2010.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ayten Ateş

Gökhan Yaşar

Yayımlanma Tarihi 15 Ocak 2019
Gönderilme Tarihi 7 Nisan 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 1

Kaynak Göster

IEEE A. Ateş ve G. Yaşar, “Doğal ve Modifiye Edilmiş Sepiyolit ile Sulu Çözeltilerden Arsenik ve Manganın Adsorpsiyonu ile Ayrımı”, APJES, c. 7, sy. 1, ss. 127–139, 2019, doi: 10.21541/apjes.413488.

Cited By

Nickel (Ni+2) Adsorption on Borax Production Waste from Industrial Wastewater
Academic Platform Journal of Engineering and Science
Fatma Tuğçe ŞENBERBER DUMANLI
https://doi.org/10.21541/apjes.827905