Research Article
BibTex RIS Cite

Kapasite Değerini Artırmak İçin Yeni Paralel Plakalı Kondansatör Tasarımı

Year 2019, Volume: 7 Issue: 1, 168 - 173, 15.01.2019
https://doi.org/10.21541/apjes.424663

Abstract

Enerji depolama sistemleri; medikal, savunma, askeri, telekomünikasyon ve havacılık uygulamaları gibi pek çok alanda önemli bir yere sahip olduğundan, dielektrik malzemelere olan talep hızla artmıştır. Elektromanyetik dalgaların madde ile etkileşimi, depolanmış enerji hakkında önemli bilgiler sağlar. Bu nedenle, enerji depolama kapasitesini dielektrik malzemeye borçlu olan enerji uygulamalarının bir örneği olarak kapasitör, kapasite değerinin dielektrik sabiti ve farklı tasarım üzerindeki bağımlılığını göstermek için Ansys Maxwell benzetim programı kullanılarak tasarlanmıştır. Enerji depolama kapasitesi ve farklı tasarım arasındaki ilişki, paralel plaka ve çok katmanlı modeller olan farklı yapılar kullanılarak gösterilmiştir. Ayrıca, kapasitörün kapasitans değerinin arttırılması için yeni bir model tasarlanıp analiz edilmiştir. Bu işlem ile dielektrik malzemenin yüzey alanı ile iletken boru / tel arasındaki etkileşimin artırılması amaçlanmıştır.

References

  • E. Kayabasi, H. Kurt, E. Celik, “Determination of micro sized texturing and nano sized etching procedure to enhance optical properties of n-type single crystalline silicon wafer”, Journal of Materials Science: Materials in Electronics, vol. 28, no. 18, pp. 14085–14090, 2017.
  • X. Hao, “A review on the dielectric materials for high energy-storage application,” J. Adv. Dielectr., vol. 3, no. 1, pp. 1–14, Jan. 2013.
  • P. Barber et al., “Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage,” Materials (Basel)., vol. 2, no. 4, pp. 1697–1733, Oct. 2009.
  • Y. Thakur et al., “Generating high dielectric constant blends from lower dielectric constant dipolar polymers using nanostructure engineering,” Nano Energy, vol. 32, no. September 2016, pp. 73–79, Feb. 2017.
  • K. Tanabe, H. Taniguchi, F. Nakamura, and I. Terasaki, “Giant inductance in non-ohmic conductor,” Appl. Phys. Express, vol. 10, no. 8, p. 81801, Aug. 2017.
  • M. Nongaillard, F. Lallemand, and B. Allard, “Design for manufacturing of 3D capacitors,” Microelectronics J., vol. 41, no. 12, pp. 845–850, Dec. 2010.
  • Y. Yamada, T. Yamanaka, T. Furutsuka, and K. Suzuki, “1–5 GHz monolithic multifrequency-variable band elimination filter utilizing fluid microelectromechanical system variable capacitors,” Jpn. J. Appl. Phys., vol. 53, no. 6S, p. 06JM04, Jun. 2014.
  • P. Y. Foeller, J. S. Dean, I. M. Reaney, and D. C. Sinclair, “Design of a bilayer ceramic capacitor with low temperature coefficient of capacitance,” Appl. Phys. Lett., vol. 109, no. 8, p. 82904, Aug. 2016.
  • S. Yu, L. Li, and H. Zheng, “BMN-based transparent capacitors with high dielectric tunability,” J. Alloys Compd., vol. 699, pp. 68–72, Mar. 2017.
  • Chuang-Yuan Lee, Shih-Jui Chen, Derrick Chi, Hongyu Yu, and Eun Sok Kim, “Surface micromachined GHz tunable capacitor with 14:1 continuous tuning range,” in IEEE 21st International Conference on Micro Electro Mechanical Systems, 2008, pp. 1008–1011.
  • A. Asmanis, G. Asmanis, D. Stepins, and L. Ribickis, “High-frequency modelling of EMI filters considering parasitic mutual couplings,” in 2016 ESA Workshop on Aerospace EMC (Aerospace EMC), 2016, vol. 2016, no. May, pp. 1–6.
  • T. Yao, “Electromagnetic Property of Capacitor Based on ADS and CST Simulation,” in Proceedings of the 5th International Conference on Machinery, Materials and Computing Technology (ICMMCT), 2017, vol. 126, no. Icmmct, pp. 366–370.
  • H. Togo, D. Moreno-Dominguez, and N. Kukutsu, “Frequency Response and Applications of Optical Electric-Field Sensor at Frequencies from 20 kHz to 180 GHz,” IEICE Trans. Electron., vol. E96.C, no. 2, pp. 227–234, 2013.
  • B. Sadhu and R. Harjani, “Capacitor bank design for wide tuning range LC VCOs: 850MHz-7.1GHz” in Proceedings of IEEE International Symposium on Circuits and Systems, 2010, no. July 2010, pp. 1975–1978.
  • H. Lu and X. Meng, “Correlation between band gap, dielectric constant, Young’s modulus and melting temperature of GaN nanocrystals and their size and shape dependences,” Sci. Rep., vol. 5, no. 1, p. 16939, Dec. 2015.
  • Youchul Jeong et al., “Analysis of noise suppression techniques using embedded capacitor on split power bus in multi-layer package,” in nternational Symposium on Electromagnetic Compatibility, 2004, vol. 1, no. September, pp. 215–220.
  • D. Hashimshony, A. Zigler, and K. Papadopoulos, “Miniature photoconducting capacitor array as a source for tunable THz radiation,” Rev. Sci. Instrum., vol. 71, no. 6, pp. 2380–2385, Jun. 2000.
  • K. . Z. A. Papadopoulos, “Tunable THz Generation by the Interaction of a Super-luminous Laser Pulse with Biased Semiconductor Plasma,” in AIP Conference Proceedings, 2006, vol. 807, no. December 2013, pp. 379–389.
  • Q. Li et al., “Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures,” Proc. Natl. Acad. Sci., vol. 113, no. 36, pp. 9995–10000, Sep. 2016.
  • E. J. Dowgiallo, “High performance capacitor with high dielectric constant material,” U.S. Patent 11 291 987, Sept. 23, 2008.

Design of a New Parallel-Plate Capacitor to Increase the Capacity Value

Year 2019, Volume: 7 Issue: 1, 168 - 173, 15.01.2019
https://doi.org/10.21541/apjes.424663

Abstract

The demand for dielectric materials has increased
rapidly since the energy storage systems have an important place in many areas
such as medical, defense, military, telecommunication and aerospace
applications. The interaction of the electromagnetic waves with matter provides
valuable information about the stored energy by material. Hence, the capacitor
as an example of energy applications, which owes its energy storage capability
to the internal dielectric material, is designed by using Ansys Maxwell
software program to indicate the dependence of the capacitance on the dielectric
constant and different design. The relationship between energy storage capacity
and different design is shown by using different structures which are parallel
plate and multi layered models. Furthermore, a new model has been designed and analyzed
to increase the performance of capacitance value of capacitor. It is aimed to
increase the interaction between surface area of dielectric material and
conductive pipes/wires with this operation.

References

  • E. Kayabasi, H. Kurt, E. Celik, “Determination of micro sized texturing and nano sized etching procedure to enhance optical properties of n-type single crystalline silicon wafer”, Journal of Materials Science: Materials in Electronics, vol. 28, no. 18, pp. 14085–14090, 2017.
  • X. Hao, “A review on the dielectric materials for high energy-storage application,” J. Adv. Dielectr., vol. 3, no. 1, pp. 1–14, Jan. 2013.
  • P. Barber et al., “Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage,” Materials (Basel)., vol. 2, no. 4, pp. 1697–1733, Oct. 2009.
  • Y. Thakur et al., “Generating high dielectric constant blends from lower dielectric constant dipolar polymers using nanostructure engineering,” Nano Energy, vol. 32, no. September 2016, pp. 73–79, Feb. 2017.
  • K. Tanabe, H. Taniguchi, F. Nakamura, and I. Terasaki, “Giant inductance in non-ohmic conductor,” Appl. Phys. Express, vol. 10, no. 8, p. 81801, Aug. 2017.
  • M. Nongaillard, F. Lallemand, and B. Allard, “Design for manufacturing of 3D capacitors,” Microelectronics J., vol. 41, no. 12, pp. 845–850, Dec. 2010.
  • Y. Yamada, T. Yamanaka, T. Furutsuka, and K. Suzuki, “1–5 GHz monolithic multifrequency-variable band elimination filter utilizing fluid microelectromechanical system variable capacitors,” Jpn. J. Appl. Phys., vol. 53, no. 6S, p. 06JM04, Jun. 2014.
  • P. Y. Foeller, J. S. Dean, I. M. Reaney, and D. C. Sinclair, “Design of a bilayer ceramic capacitor with low temperature coefficient of capacitance,” Appl. Phys. Lett., vol. 109, no. 8, p. 82904, Aug. 2016.
  • S. Yu, L. Li, and H. Zheng, “BMN-based transparent capacitors with high dielectric tunability,” J. Alloys Compd., vol. 699, pp. 68–72, Mar. 2017.
  • Chuang-Yuan Lee, Shih-Jui Chen, Derrick Chi, Hongyu Yu, and Eun Sok Kim, “Surface micromachined GHz tunable capacitor with 14:1 continuous tuning range,” in IEEE 21st International Conference on Micro Electro Mechanical Systems, 2008, pp. 1008–1011.
  • A. Asmanis, G. Asmanis, D. Stepins, and L. Ribickis, “High-frequency modelling of EMI filters considering parasitic mutual couplings,” in 2016 ESA Workshop on Aerospace EMC (Aerospace EMC), 2016, vol. 2016, no. May, pp. 1–6.
  • T. Yao, “Electromagnetic Property of Capacitor Based on ADS and CST Simulation,” in Proceedings of the 5th International Conference on Machinery, Materials and Computing Technology (ICMMCT), 2017, vol. 126, no. Icmmct, pp. 366–370.
  • H. Togo, D. Moreno-Dominguez, and N. Kukutsu, “Frequency Response and Applications of Optical Electric-Field Sensor at Frequencies from 20 kHz to 180 GHz,” IEICE Trans. Electron., vol. E96.C, no. 2, pp. 227–234, 2013.
  • B. Sadhu and R. Harjani, “Capacitor bank design for wide tuning range LC VCOs: 850MHz-7.1GHz” in Proceedings of IEEE International Symposium on Circuits and Systems, 2010, no. July 2010, pp. 1975–1978.
  • H. Lu and X. Meng, “Correlation between band gap, dielectric constant, Young’s modulus and melting temperature of GaN nanocrystals and their size and shape dependences,” Sci. Rep., vol. 5, no. 1, p. 16939, Dec. 2015.
  • Youchul Jeong et al., “Analysis of noise suppression techniques using embedded capacitor on split power bus in multi-layer package,” in nternational Symposium on Electromagnetic Compatibility, 2004, vol. 1, no. September, pp. 215–220.
  • D. Hashimshony, A. Zigler, and K. Papadopoulos, “Miniature photoconducting capacitor array as a source for tunable THz radiation,” Rev. Sci. Instrum., vol. 71, no. 6, pp. 2380–2385, Jun. 2000.
  • K. . Z. A. Papadopoulos, “Tunable THz Generation by the Interaction of a Super-luminous Laser Pulse with Biased Semiconductor Plasma,” in AIP Conference Proceedings, 2006, vol. 807, no. December 2013, pp. 379–389.
  • Q. Li et al., “Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures,” Proc. Natl. Acad. Sci., vol. 113, no. 36, pp. 9995–10000, Sep. 2016.
  • E. J. Dowgiallo, “High performance capacitor with high dielectric constant material,” U.S. Patent 11 291 987, Sept. 23, 2008.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Turgut Ozturk

Publication Date January 15, 2019
Submission Date May 17, 2018
Published in Issue Year 2019 Volume: 7 Issue: 1

Cite

IEEE T. Ozturk, “Design of a New Parallel-Plate Capacitor to Increase the Capacity Value”, APJES, vol. 7, no. 1, pp. 168–173, 2019, doi: 10.21541/apjes.424663.