Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the Effect of Graphene-Nano Carbon Based Reinforcement on Physical and Mechanical Properties Added to Aluminum-Magnesium-Zirconium Alloy

Yıl 2019, Cilt: 7 Sayı: 2, 180 - 188, 25.05.2019
https://doi.org/10.21541/apjes.445377

Öz

In this work, metal-carbon nanocomposite production is targeted and nanocarbon forms (graphene) to be used as additive material
are produced by electro exfoliation method. The produced graphene was dissolved in alcohol and polymer-based solvents to
obtain a hydrophilic property, followed by the addition of metal powders to this solution to obtain a homogeneous Grafen-Metal
powder mixture. This powder mixture is directly pressed by single-axis press and cold isostatic press, then sintered in argon and
nitrogen atmosphere and finally microstructure textural, mechanical (hardness, etc.) and physical properties (porosity, density)
are measured and characterization the results are discussed. The added wt.% 3 Mg and 1% Zr increased the initial hardness value
of Aluminum from 20 to 30 Hv to 80 HV. It has been measured that the hardness increases to 80 HV and above depending on
the increased pressing force and the increased sintering temperature, but a decrease in mechanical values is measured after a certain value. The graphene reinforcement added to this alloy at wt% 0.05, 0.15, 0.3, 0.45 g also provided increased hardness
and strength. The hardness and strength values increased above the values of 100 HV and 250 MPa, respectively. A systematic
new method of graphene production, composite reinforcement method and sintering process has been obtained and it has been
observed that the addition of graphene causes a filling effect in the matrix, leading to an increase in strength and hardness values.
In addition, it was observed that wear resistance in Al-3Mg-1Zr alloy with graphene reinforcement was observed to be increased,
and in the powder compacting process, friction decreased and compressibility increased. Such a result is believed to provide
engineering benefit, particularly in extrusion or deep drawing, by reducing the frictional forces and increasing the deformation
capability during forming operations.

Kaynakça

  • [1] Tjong S.C. 2013 “Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets” Materials Science and Engineering R 74 (2013) 281–350
  • [2] Liu L. *, Ren D and Liu F (2014)., A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys, Materials 2014, 7(5), 3735-3757; doi:10.3390/ma7053735
  • [3] Haferkamp, H.; Niemeyer, M.; Dilthey, U.; Trager, G. Laser and electron beam welding of magnesium materials. Weld. Cutt 2000, 52, 178–180.
  • [4] Yarkadaş G., Kumruoğlu L.C, Şevik H., The effect of Cerium addition on microstructure and mechanical properties of high pressure die cast Mg-5Sn alloy Materials Characterization Volume 136, February 2018, Pages 152-156
  • [5] Ashuri GS. Emamy M. Bidel M. Khoshsout F. (2015) Effect of Mn alloy element on microstructural features and mechanical performance of Al-6%Mg commercial casting alloy Conference 9th Joint Congress of Iranian Metallurgical Engineering society & Iranian Foundrimans society At: iran November 2015 DOI10.13140/RG.2.1.1464.6646
  • [6] Morishigea T, Hiratab T, Uesugia T, Takigawaa Y, Tsujikawaa M, Higashia H; Effect of Mg content on the minimum grain size of Al–Mg alloys obtained by friction stir processing Scripta Materialia Volume 64, Issue 4, February 2011, Pages 355-35
  • [7] Han Guang, Liu Xiangfa, Ding Haimin(2009), Grain refinement of Mg–Al based alloys by a new Al–C master alloy Journal of Alloys and Compounds, Volume 467, Issues 1–2, 7 January 2009, Pages 202-207 Journal of Alloys and Compounds
  • [8] Hai Yan Nan Zhen Hua Ni Jun Wang Zainab Zafar Zhi Xiang Shi Ying Ying Wang, The thermal stability of graphene in air investigated by Raman spectroscopy First published: 29 April 2013 https://doi.org/10.1002/jrs.4312
  • [9] Low C.T.J., Walsh F.C., Chakrabarti M.H., Hashim M.A., Hussain M.A., Electrochemical approaches to the production of graphene flakes and their potantial applications, Carbon, 54, 1-21, (2013).
  • [10] ZHU B.Y., Murali S., Cai W., Li X., Suk J.W., Potts J.R., Ruof R.S., “Graphene and Graphene Oxide: Synthesis, Properties, and Applications”, Adv. Mater., 22, 3906–3924, (2010).
  • [11] MORALES G.M., Schifani P., Ellis G., Ballesteros C., Martinez G., Barbero C., Salavagione H.J., “High-quality few layer graphene produced by electrochemical intercalation and microwave-assisted expansion of graphite”, Carbon, 49, 2809-2816, (2011).
  • [12] MATSUMOTO Y., Tateishi H., Koinuma M., Kamei Y., Ogata C., Gezuhara K., Hatakeyama K., Hayami S., Taniguchi T., Funatsu A., J., “Electrolytic graphene oxide and its electrochemical properties”, Electro. Chem., 704, 233-241, (2013).
  • [13] SU, C-Y., Lu, A-Y., Xu, Y., Chen, F-R., Khlobystov, A.N., Li, L-J., “High quality thin graphene films from fast electrochemical exfoliation”, ACSNANO, 5 (3), 2332-2339, (2011).).
  • [14] YANG, C.Y., Wu, C.L., Lin, Y.H., Tsai, L.H., Chi, Y.C., Chang, J.H., Wu, C.I., Tsai, H.K., Tsai, D.P. ve Lin, G.R. (2013). “Fabricating graphite nano-sheet powder by slow electrochemical exfoliation of large-scale graphite foil as a mode-locker for fiber lasers”. OSA Publishing, 3, 1792-2002.
  • [15] H Cheun Lee et al. “Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene” March 2017 RSC Advances 7(26):15644-15693 DOI: 10.1039/C7RA00392G
  • [16] R. Surace a , L.A.C. De Filippis b,*, A.D. Ludovico a , G. Boghetich “Influence of processing parameters on aluminium foam produced by space holder technique”Materials and Design 30 (2009) 1878–1885
  • [17] S.J. Yan et al, “Investigating aluminum alloy reinforced by graphene nanoflakes”,. Materials Science & Engineering A 612(2014) 440–444
  • [18] Hongyan Yue et. al. “Effect of ball-milling and graphene contents on the mechanical properties and fracture mechanisms of graphene nanosheets reinforced copper matrix composites”, Journal of Alloys and Compounds 691 (2017) 755-762

Alüminyum-Magnezyum-Zirkonyum Alaşımına Grafen-Nano Karbon Esaslı Takviyelerin, Fiziksel ve Mekanik Özelliklere Etkisinin İncelenmesi

Yıl 2019, Cilt: 7 Sayı: 2, 180 - 188, 25.05.2019
https://doi.org/10.21541/apjes.445377

Öz

9Bu çalışmada, metal-karbon nano-kompozit üretimi hedeflenmiştir ve katkı malzemesi olarak kullanılacak olan nano-karbon
formları (grafen), elektro eksfoliasyon yöntemiyle üretilmiştir. Üretilmiş olan grafen, alkol ve polimer bazlı çözücülerde çözülüp,
hidrofilik özellik elde edilmiştir takiben metal tozları bu çözeltiye ilave edilerek homojen bir Grafen-Metal tozu karışımı elde
edilmiştir. Üretilmiş olan bu karışım tozlar direkt olarak tek eksenli pres ve soğuk isostatik pres ile peş peşe preslenmiştir, daha
sonra argon ve azot atmosferinde sinterlenmiş ve nihai olarak da mikroyapı tekstürü, mekanik (sertlik, v.b) ve fiziksel özellikler
(porozite, yoğunluk) ölçülmüştür ve karakterizasyon sonuçları tartışılmıştır. İlave edilen ağ..%3 Mg ve %1 Zr, Alüminyumun
başlangıç sertlik değerini 20-30 Hv den 80 HV ye yükselmiştir. Artan pres kuvveti ve artan sinterleme sıcaklığına bağlı olarak
sertliğin 80 HV ve üzeri seviyelerine yükseldiği ölçülmüştür ancak belirli bir değerden sonra mekanik değerlerde azalma olduğu
ölçülmüştür. Bu alaşıma ilave edilen ağ.% 0.05, 0.15, 0.3, 0.45 g grafen takviyesi de yine sertlikte ve mukavemette artış
sağlamıştır. Sertlik ve mukavemet değeri sırası ile 100 HV ve 250 MPa daha üst değerlere üzerine yükselmiştir. Grafenin üretimi,
kompozit takviye yöntemi ve sinterleme süreci ile ilgili sistematik yeni bir yöntem elde edilmiştir ve bunun sonucunda grafen
ilave edilmesinin, matris içinde dolgu etkisi yaparak, mukavemet ve sertlik değerlerinde artışa yol açtığı gözlenmiştir. Ayrıca
grafen takviyeli, Al-3Mg-1Zr alaşımda aşınma direncinin artığı gözlemlenmiş ve toz sıkıştırma sürecinde sürtünmenin azaldığı
ve sıkıştırılabilirliğin arttığı tespit edilmiştir. Böyle bir sonucun özellikle ekstrüzyon veya derin çekme gibi işlemlerde, şekil
verme işlemleri sırasında sürtünme kuvvetlerini azaltarak ve deformasyon kabiliyetini artırarak, mühendislik fayda
sağlayacağına inanılmaktadır. 

Kaynakça

  • [1] Tjong S.C. 2013 “Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets” Materials Science and Engineering R 74 (2013) 281–350
  • [2] Liu L. *, Ren D and Liu F (2014)., A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys, Materials 2014, 7(5), 3735-3757; doi:10.3390/ma7053735
  • [3] Haferkamp, H.; Niemeyer, M.; Dilthey, U.; Trager, G. Laser and electron beam welding of magnesium materials. Weld. Cutt 2000, 52, 178–180.
  • [4] Yarkadaş G., Kumruoğlu L.C, Şevik H., The effect of Cerium addition on microstructure and mechanical properties of high pressure die cast Mg-5Sn alloy Materials Characterization Volume 136, February 2018, Pages 152-156
  • [5] Ashuri GS. Emamy M. Bidel M. Khoshsout F. (2015) Effect of Mn alloy element on microstructural features and mechanical performance of Al-6%Mg commercial casting alloy Conference 9th Joint Congress of Iranian Metallurgical Engineering society & Iranian Foundrimans society At: iran November 2015 DOI10.13140/RG.2.1.1464.6646
  • [6] Morishigea T, Hiratab T, Uesugia T, Takigawaa Y, Tsujikawaa M, Higashia H; Effect of Mg content on the minimum grain size of Al–Mg alloys obtained by friction stir processing Scripta Materialia Volume 64, Issue 4, February 2011, Pages 355-35
  • [7] Han Guang, Liu Xiangfa, Ding Haimin(2009), Grain refinement of Mg–Al based alloys by a new Al–C master alloy Journal of Alloys and Compounds, Volume 467, Issues 1–2, 7 January 2009, Pages 202-207 Journal of Alloys and Compounds
  • [8] Hai Yan Nan Zhen Hua Ni Jun Wang Zainab Zafar Zhi Xiang Shi Ying Ying Wang, The thermal stability of graphene in air investigated by Raman spectroscopy First published: 29 April 2013 https://doi.org/10.1002/jrs.4312
  • [9] Low C.T.J., Walsh F.C., Chakrabarti M.H., Hashim M.A., Hussain M.A., Electrochemical approaches to the production of graphene flakes and their potantial applications, Carbon, 54, 1-21, (2013).
  • [10] ZHU B.Y., Murali S., Cai W., Li X., Suk J.W., Potts J.R., Ruof R.S., “Graphene and Graphene Oxide: Synthesis, Properties, and Applications”, Adv. Mater., 22, 3906–3924, (2010).
  • [11] MORALES G.M., Schifani P., Ellis G., Ballesteros C., Martinez G., Barbero C., Salavagione H.J., “High-quality few layer graphene produced by electrochemical intercalation and microwave-assisted expansion of graphite”, Carbon, 49, 2809-2816, (2011).
  • [12] MATSUMOTO Y., Tateishi H., Koinuma M., Kamei Y., Ogata C., Gezuhara K., Hatakeyama K., Hayami S., Taniguchi T., Funatsu A., J., “Electrolytic graphene oxide and its electrochemical properties”, Electro. Chem., 704, 233-241, (2013).
  • [13] SU, C-Y., Lu, A-Y., Xu, Y., Chen, F-R., Khlobystov, A.N., Li, L-J., “High quality thin graphene films from fast electrochemical exfoliation”, ACSNANO, 5 (3), 2332-2339, (2011).).
  • [14] YANG, C.Y., Wu, C.L., Lin, Y.H., Tsai, L.H., Chi, Y.C., Chang, J.H., Wu, C.I., Tsai, H.K., Tsai, D.P. ve Lin, G.R. (2013). “Fabricating graphite nano-sheet powder by slow electrochemical exfoliation of large-scale graphite foil as a mode-locker for fiber lasers”. OSA Publishing, 3, 1792-2002.
  • [15] H Cheun Lee et al. “Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene” March 2017 RSC Advances 7(26):15644-15693 DOI: 10.1039/C7RA00392G
  • [16] R. Surace a , L.A.C. De Filippis b,*, A.D. Ludovico a , G. Boghetich “Influence of processing parameters on aluminium foam produced by space holder technique”Materials and Design 30 (2009) 1878–1885
  • [17] S.J. Yan et al, “Investigating aluminum alloy reinforced by graphene nanoflakes”,. Materials Science & Engineering A 612(2014) 440–444
  • [18] Hongyan Yue et. al. “Effect of ball-milling and graphene contents on the mechanical properties and fracture mechanisms of graphene nanosheets reinforced copper matrix composites”, Journal of Alloys and Compounds 691 (2017) 755-762
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Levent Cenk Kumruoğlu

Yayımlanma Tarihi 25 Mayıs 2019
Gönderilme Tarihi 18 Temmuz 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 2

Kaynak Göster

IEEE L. C. Kumruoğlu, “Alüminyum-Magnezyum-Zirkonyum Alaşımına Grafen-Nano Karbon Esaslı Takviyelerin, Fiziksel ve Mekanik Özelliklere Etkisinin İncelenmesi”, APJES, c. 7, sy. 2, ss. 180–188, 2019, doi: 10.21541/apjes.445377.