Yıl 2020, Cilt 8 , Sayı 1, Sayfalar 208 - 216 2020-01-28

Mass Fabrication of Two Dimensional Polymeric Nanocomposites with Spin Coating
Döner (Spin) Kaplama ile İki Boyutlu Polimerik Nanokompozitlerin Geniş Alanlı Üretimleri

Numan GÖZÜBENLİ [1]


The aim of this study is to obtain high crystal quality colloidal templates using spin-coating technique and to determine the production conditions of nanocomposites produced from these templates. For this purpose, the glass surfaces were coated by spin- coating technique on various surfaces using homogeneously dispersed silica colloids in the prepared acrylate monomer. With this coating technique based on centrifugal forces, and following polymerization step, high quality nanoarrays of colloidal crystals in two dimensions were successfully prepared. In ethanol, the dilute silica nanospheres were removed and then dissolved with ethoxylated trimethylolpropane triacrylate monomer having a viscosity of 60 cps to <20% volumetric fractions. This prepared colloidal suspension-monomer mixture was coated on glass surfaces in a very uniform manner. The thickness of the film can only be controlled by changing the rotation speed and time of spin coating. Selective removal of the polymer matrix and silica spheres was achieved by reactive ion abrasive and hydrofluoric acid treatments, yielding large area colloidal crystals and macroporous polymers, respectively. The normal transmission spectra in the visible and near infrared regions and the apparent peaks of Bragg diffraction from these two-dimensional nanostructures were determined by graphs. Based on optical disc-scale coating, this technique is compatible with standard semiconductor microfabrications and optical biosensor production. Crystallization application based on centrifugal force of spin coating process can be easily used in technological applications based on coating techniques.

Bu çalışmanın amacı, döner-kaplama tekniği kullanılarak yüksek kristal kalite kolloidal şablonların eldesi ve bu şablonlardan üretilen nanokompozitlerin üretim koşullarının belirlenmesidir. Bu amaçla, hazırlanan akrilat monomeri içerisine homojen dağılmış silika kolloidleri kullanarak çeşitli yüzeyler üzerine döner kaplama tekniği ile cam yüzeyler kaplandı. Merkez kaç kuvvetlerine dayalı bu kaplama tekniği ile yüksek kaliteli nanodizilimler ve  polimerizasyon aşamasıyla, iki boyutda kolloidal kristallerin polimer yapıları başarılı bir şekilde hazırlandı. Etanolde, seyreltik silika nanoküreler temizlendikten sonra viskozitesi 60 cps olan etoksile trimetilolpropan triakrilat monomer ile hacimsel fraksiyonları < %20 olacak şekilde çözüldü.  Hazırlanan bu kolloidal süspansiyon-monomer karışımı cam yüzeyler üzerine oldukça tek dizilimli olarak kaplandı. Filmin kalınlığı sadece dönüş hızı ve dönüş zamanı değiştirilerek kontrol edilebilmektedir. Polimer matrisinin ve silis kürelerinin seçici olarak uzaklaştırılması, reaktif iyon aşındırıcı ve hidroflorik asit uygulamalarıyla gerçekleştirilmiş olup, sırasıyla geniş alanlı kolloidal kristallerin makro gözenekli polimer şablonları elde edildi. Görünür ve yakın kızılötesi bölgelerdeki normal iletim spektrumları, iki boyutlu bu nanoyapılardan, Bragg kırınımın belirgin tepe noktaları grafiklerle belirlendi. Optik disk ölçekli kaplama işlemlerine dayalı bu teknik, standart yarı iletken mikrofabrikasyonlara ve optik  biyosensör üretimine uyumludur. Döner kaplama işleminin, merkez kaç kuvvetine dayalı kristalleşme uygulaması, kaplama tekniklerine dayalı, teknolojik uygulamalarda rahatlıkla kullanılabilmektedir.

  • [1] K. Askar et al., "Self-assembled self-cleaning broadband anti-reflection coatings," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 439, pp. 84-100, Dec 2013, doi: 10.1016/j.colsurfa.2013.03.004.
  • [2] A. P. Bartlett, M. Pichumani, M. Giuliani, W. Gonzalez-Vinas, and A. Yethiraj, "Modified Spin-coating Technique to Achieve Directional Colloidal Crystallization," Langmuir, vol. 28, no. 6, pp. 3067-3070, Feb 14 2012, doi: 10.1021/la204123s.
  • [3] A. Budkowski et al., "Polymer blends spin-cast into films with complementary elements for electronics and biotechnology," Journal of Applied Polymer Science, vol. 125, no. 6, pp. 4275-4284, Sep 15 2012, doi: 10.1002/app.36574.
  • [4] S. L. Burrs et al., "A comparative study of graphene-hydrogel hybrid bionanocomposites for biosensing," Analyst, 10.1039/C4AN01788A vol. 140, no. 5, pp. 1466-1476, 2015, doi: 10.1039/C4AN01788A.
  • [5] M. Giuliani, W. Gonzalez-Vinas, K. M. Poduska, and A. Yethiraj, "Dynamics of Crystal Structure Formation in Spin-Coated Colloidal Films," Journal of Physical Chemistry Letters, vol. 1, no. 9, pp. 1481-1486, May 6 2010, doi: 10.1021/jz1002605.
  • [6] N. Gozubenli, E. Yasun, and N. Dilsiz, "Hybrid nanomaterial: biocolloidals," vol. 41, no. 5, DOI: 10.3906/biy-1705-31, pp. 700-708, 2017.
  • [7] N. Gozubenli, E. Yasun, and L. Boskic, "Fabrication of nanoporous film by transfer of colloidal particles and application to biomacromolecules," Applied Nanoscience, vol. 8, no. 4, pp. 739-750, 2018/04/01 2018, doi: 10.1007/s13204-018-0825-6.
  • [8] S. Jain, C. Cwang, and A. O. Adeyeye, "Magnetoresistance behavior of ferromagnetic nanorings in a ring-wire hybrid configuration," Nanotechnology, vol. 19, no. 8, Feb 2008, Art no. 085302, doi: 10.1088/0957-4484/19/8/085302.
  • [9] P. Jiang and M. J. McFarland, "Large-Scale Fabrication of Wafer-Size Colloidal Crystals, Macroporous Polymers and Nanocomposites by Spin-Coating," Journal of the American Chemical Society, vol. 126, no. 42, pp. 13778-13786, 2013/12/25 2004, doi: 10.1021/ja0470923.
  • [10] H. Jiang, K. Yu, and Y. Wang, "Antireflective structures via spin casting of polymer latex," Optics Letters, vol. 32, no. 5, pp. 575-577, 2007/03/01 2007, doi: 10.1364/OL.32.000575.
  • [11] X. Liu, B. Choi, N. Gozubenli, and P. Jiang, "Periodic arrays of metal nanorings and nanocrescents fabricated by a scalable colloidal templating approach," Journal of Colloid and Interface Science, vol. 409, pp. 52-58, 11/1/ 2013, doi: https://doi.org/10.1016/j.jcis.2013.07.018.
  • [12] F. Malet, M. Pi, M. Barranco, E. Lipparini, and L. Serra, "Optical response of two-dimensional few-electron concentric double quantum rings: A local-spin-density-functional theory study," Physical Review B, vol. 74, no. 19, Nov 2006, Art no. 193309, doi: 10.1103/PhysRevB.74.193309.
  • [13] S. Middleman, "The effect of induced air flow on the spin coating of viscous liquids," vol. 62, ed: Journal of Applied Physics, 1987.
  • [14] Y. Ren and A. O. Adeyeye, "Magnetic spin states and vortex stability control in elongated Ni(80)Fe(20) nanorings," Journal of Applied Physics, vol. 105, no. 6, Mar 2009, Art no. 063901, doi: 10.1063/1.3093894.
  • [15] C. A. F. Vaz et al., "Ferromagnetic nanorings," Journal of Physics-Condensed Matter, vol. 19, no. 25, Jun 2007, Art no. 255207, doi: 10.1088/0953-8984/19/25/255207.
  • [16] J. Wang, K. Deshpande, and G. B. McKenna, "Determination of the Shear Modulus of Spin-Coated Lipid Multibilayer Films by the Spontaneous Embedment of Submicrometer-Sized Particles," Langmuir, vol. 27, no. 11, pp. 6846-6854, Jun 7 2011, doi: 10.1021/la2005375.
  • [17] T. Yang, A. Hirohata, M. Hara, T. Kimura, and Y. Otani, "Current-induced vortex-vortex switching in a nanopillar comprising two Co nano-rings," Applied Physics Letters, vol. 90, no. 9, Feb 2007, Art no. 092505, doi: 10.1063/1.2710185.
  • [18] T. Yang, A. Hirohata, L. Vila, T. Kimura, and Y. Otani, "Vertical stack of Co nanorings with current-perpendicular-to-plane giant magnetoresistance: Experiment and micromagnetic simulation," Physical Review B, vol. 76, no. 17, Nov 2007, Art no. 172401, doi: 10.1103/PhysRevB.76.172401.
  • [19] K. Askar et al., "Self-assembled nanoparticle antireflection coatings on geometrically complex optical surfaces," Optics Letters, vol. 43, no. 21, pp. 5238-5241, 2018/11/01 2018, doi: 10.1364/OL.43.005238.
  • [20] Y. Bao, H. Fong, and C. Jiang, "Manipulating the Collective Surface Plasmon Resonances of Aligned Gold Nanorods in Electrospun Composite Nanofibers," Journal of Physical Chemistry C, vol. 117, no. 41, pp. 21490-21497, Oct 17 2013, doi: 10.1021/jp4074703.
  • [21] J. F. Bertone, P. Jiang, K. S. Hwang, D. M. Mittleman, and V. L. Colvin, "Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals," Physical Review Letters, vol. 83, no. 2, pp. 300-303, Jul 12 1999, doi: 10.1103/PhysRevLett.83.300.
  • [22] J. H. Kim, S. H. Kang, K. Zhu, J. Y. Kim, N. R. Neale, and A. J. Frank, "Ni-NiO core-shell inverse opal electrodes for supercapacitors," Chemical Communications, vol. 47, no. 18, pp. 5214-5216, 2011, doi: 10.1039/c0cc05191h.
  • [23] A. K. Samusev et al., "Two-dimensional light diffraction from thin opal films," Physics of the Solid State, vol. 53, no. 5, pp. 1056-1061, 2011// 2011, doi: 10.1134/S106378341105026X.
  • [24] H. Xing, J. Li, J. Guo, and J. Wei, "Bio-inspired thermal-responsive inverse opal films with dual structural colors based on liquid crystal elastomer," Journal of Materials Chemistry C, vol. 3, no. 17, pp. 4424-4430, 2015 2015, doi: 10.1039/c5tc00548e.
  • [25] X. Dou, P.-Y. Chung, P. Jiang, and J. Dai, "Surface plasmon resonance and surface-enhanced Raman scattering sensing enabled by digital versatile discs," Applied Physics Letters, vol. 100, no. 4, Jan 23 2012, Art no. 041116, doi: 10.1063/1.3679682.
  • [26] X. Chen, X. Wei, and K. Jiang, "Fabrication of large-area nickel nanobump arrays," Microelectronic Engineering, vol. 86, no. 4-6, pp. 871-873, Apr-Jun 2009, doi: 10.1016/j.mee.2009.01.060.
  • [27] X. Dou, B. M. Phillips, P.-Y. Chung, and P. Jiang, "High surface plasmon resonance sensitivity enabled by optical disks," Optics Letters, vol. 37, no. 17, pp. 3681-3683, Sep 1 2012.
  • [28] X. Ding et al., "Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window," Journal of the American Chemical Society, vol. 136, no. 44, pp. 15684-15693, 2014/11/05 2014, doi: 10.1021/ja508641z.
  • [29] W.-H. Huang, C.-H. Sun, W.-L. Min, P. Jiang, and B. Jiang, "Templated Fabrication of Periodic Binary Nanostructures," Journal of Physical Chemistry C, vol. 112, no. 45, pp. 17586-17591, Nov 13 2008, doi: 10.1021/jp807290u.
  • [30] C.-J. Jia et al., "Large-Scale Synthesis of Single-Crystalline Iron Oxide Magnetic Nanorings," Journal of the American Chemical Society, vol. 130, no. 50, pp. 16968-16977, Dec 17 2008, doi: 10.1021/ja805152t.
  • [31] W.-H. Huang, C.-H. Sun, W.-L. Min, P. Jiang, and B. Jiang, "Templated Fabrication of Periodic Binary Nanostructures," The Journal of Physical Chemistry C, vol. 112, no. 45, pp. 17586-17591, 2013/12/25 2008, doi: 10.1021/jp807290u.
  • [32] K. Jiang, Y. Wang, J. Dong, L. Gui, and Y. Tang, "Electrodeposited Metal Sulfide Semiconductor Films with Ordered Nanohole Array Structures," vol. 17 (12),, ed: Langmuir, 2001, pp. 3635-3638.
  • [33] P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, "Single-crystal colloidal multilayers of controlled thickness," Chemistry of Materials, vol. 11, no. 8, pp. 2132-2140, Aug 1999, doi: 10.1021/cm990080+.
  • [34] H. Yang and P. Jiang, "Large-Scale Colloidal Self-Assembly by Doctor Blade Coating," Langmuir, vol. 26, no. 16, pp. 13173-13182, 2013/12/25 2010, doi: 10.1021/la101721v.
  • [35] H. Yang and P. Jiang, "Macroporous photonic crystal-based vapor detectors created by doctor blade coating," Applied Physics Letters, vol. 98, no. 1, pp. 011104-011104-3, 2011.
  • [36] H. Yang, N. Gozubenli, Y. Fang, and P. Jiang, "Generalized Fabrication of Monolayer Nonclose-Packed Colloidal Crystals with Tunable Lattice Spacing," Langmuir, vol. 29, no. 25, pp. 7674-7681, Jun 25 2013, doi: 10.1021/la4011554.
  • [37] M. Bardosova, M. E. Pemble, I. M. Povey, and R. H. Tredgold, "The Langmuir-Blodgett Approach to Making Colloidal Photonic Crystals from Silica Spheres," Advanced Materials, vol. 22, no. 29, pp. 3104-3124, 2010, doi: 10.1002/adma.200903708.
  • [38] F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, "Colloid Monolayers as Versatile Lithographic Masks," Langmuir, vol. 13, no. 11, pp. 2983-2987, 1997/05/01 1997, doi: 10.1021/la9621123.
  • [39] P. Jiang, "Large-Scale Fabrication of Periodic Nanostructured Materials by Using Hexagonal Non-Close-Packed Colloidal Crystals as Templates," Langmuir, vol. 22, no. 9, pp. 3955-3958, 2013/12/25 2006, doi: 10.1021/la052326x.
  • [40] T. Ding, K. Song, K. Clays, and C.-H. Tung, "Bottom-Up Photonic Crystal Approach with Top-Down Defect and Heterostructure Fine-Tuning," Langmuir, vol. 26, no. 6, pp. 4535-4539, Mar 16 2010, doi: 10.1021/la903371a.
  • [41] J. J. Kim, Y. Li, E. J. Lee, and S. O. Cho, "Fabrication of Size-Controllable Hexagonal Non-Close-Packed Colloidal Crystals and Binary Colloidal Crystals by Pyrolysis Combined with Plasma-Electron Coirradiation of Polystyrene Colloidal Monolayer," Langmuir, vol. 27, no. 6, pp. 2334-2339, Mar 15 2011, doi: 10.1021/la104881w.
  • [42] F. Caruso, H. Lichtenfeld, M. Giersig, and H. Mohwald, "Electrostatic self-assembly of silica nanoparticle - Polyelectrolyte multilayers on polystyrene latex particles," (in English), Journal of the American Chemical Society, Article vol. 120, no. 33, pp. 8523-8524, Aug 1998.
  • [43] A. M. Kalsin, M. Fialkowski, M. Paszewski, S. K. Smoukov, K. J. M. Bishop, and B. A. Grzybowski, "Electrostatic Self-Assembly of Binary Nanoparticle Crystals with a Diamond-Like Lattice," Science, vol. 312, no. 5772, pp. 420-424, 2006, doi: 10.1126/science.1125124.
  • [44] Z. Ren, X. Li, J. Zhang, W. Li, X. Zhang, and B. Yang, "Tunable two-dimensional non-close-packed microwell arrays using colloidal crystals as templates," Langmuir, vol. 23, no. 15, pp. 8272-8276, Jul 17 2007, doi: 10.1021/la700333r.
  • [45] X. Yan, J. M. Yao, G. A. Lu, X. Chen, K. Zhang, and B. Yang, "Microcontact printing of colloidal crystals," Journal of the American Chemical Society, vol. 126, no. 34, pp. 10510-10511, Sep 1 2004, doi: 10.1021/ja0479078.
  • [46] S. J. Ding, C. L. Zhang, M. Yang, X. Z. Qu, Y. F. Lu, and Z. Z. Yang, "Template synthesis of composite hollow spheres using sulfonated polystyrene hollow spheres," Polymer, vol. 47, pp. 8360-8366, 2006, doi: 10.1016/j.polymer.2006.10.001.
  • [47] X. Li et al., "Modulating Two-Dimensional Non-Close-Packed Colloidal Crystal Arrays by Deformable Soft Lithography," Langmuir, vol. 26, no. 4, pp. 2930-2936, Feb 16 2010, doi: 10.1021/la9027018.
  • [48] P. Jiang, T. Prasad, M. J. McFarland, and V. L. Colvin, "Two-dimensional nonclose-packed colloidal crystals formed by spincoating," Applied Physics Letters, vol. 89, no. 1, Jul 3 2006, Art no. 011908, doi: 10.1063/1.2218832.
  • [49] W. K. Jung, N.-H. Kim, and K. M. Byun, "Development of a Large-Area Plasmonic Sensor Substrate with Dielectric Subwavelength Gratings Using Nanoimprint Lithography," Journal of Biomedical Nanotechnology, vol. 9, no. 4, pp. 685-688, Apr 2013, doi: 10.1166/jbn.2013.1521.
  • [50] T. S. Juliane Junesch, and Andreas B. Dahlin, "Optical Properties of Nanohole Arrays in Metal–Dielectric Double Films Prepared by Mask-on-Metal Colloidal Lithography," vol. 6 (11),, ed: ACS Nano, 2012, pp. 10405-10415.
Birincil Dil tr
Konular Mühendislik
Yayımlanma Tarihi Ocak 2020
Bölüm Makaleler
Yazarlar

Orcid: 0000-0003-1897-9096
Yazar: Numan GÖZÜBENLİ (Sorumlu Yazar)
Kurum: HARRAN ÜNİVERSİTESİ
Ülke: Turkey


Destekleyen Kurum Harran üniversitesi
Proje Numarası 82605
Tarihler

Yayımlanma Tarihi : 28 Ocak 2020

Bibtex @araştırma makalesi { apjes577446, journal = {Akademik Platform Mühendislik ve Fen Bilimleri Dergisi}, issn = {}, eissn = {2147-4575}, address = {}, publisher = {Akademik Platform}, year = {2020}, volume = {8}, pages = {208 - 216}, doi = {10.21541/apjes.577446}, title = {Döner (Spin) Kaplama ile İki Boyutlu Polimerik Nanokompozitlerin Geniş Alanlı Üretimleri}, key = {cite}, author = {GÖZÜBENLİ, Numan} }
APA GÖZÜBENLİ, N . (2020). Döner (Spin) Kaplama ile İki Boyutlu Polimerik Nanokompozitlerin Geniş Alanlı Üretimleri. Akademik Platform Mühendislik ve Fen Bilimleri Dergisi , 8 (1) , 208-216 . DOI: 10.21541/apjes.577446
MLA GÖZÜBENLİ, N . "Döner (Spin) Kaplama ile İki Boyutlu Polimerik Nanokompozitlerin Geniş Alanlı Üretimleri". Akademik Platform Mühendislik ve Fen Bilimleri Dergisi 8 (2020 ): 208-216 <https://dergipark.org.tr/tr/pub/apjes/issue/50706/577446>
Chicago GÖZÜBENLİ, N . "Döner (Spin) Kaplama ile İki Boyutlu Polimerik Nanokompozitlerin Geniş Alanlı Üretimleri". Akademik Platform Mühendislik ve Fen Bilimleri Dergisi 8 (2020 ): 208-216
RIS TY - JOUR T1 - Döner (Spin) Kaplama ile İki Boyutlu Polimerik Nanokompozitlerin Geniş Alanlı Üretimleri AU - Numan GÖZÜBENLİ Y1 - 2020 PY - 2020 N1 - doi: 10.21541/apjes.577446 DO - 10.21541/apjes.577446 T2 - Akademik Platform Mühendislik ve Fen Bilimleri Dergisi JF - Journal JO - JOR SP - 208 EP - 216 VL - 8 IS - 1 SN - -2147-4575 M3 - doi: 10.21541/apjes.577446 UR - https://doi.org/10.21541/apjes.577446 Y2 - 2019 ER -
EndNote %0 Akademik Platform Mühendislik ve Fen Bilimleri Dergisi Döner (Spin) Kaplama ile İki Boyutlu Polimerik Nanokompozitlerin Geniş Alanlı Üretimleri %A Numan GÖZÜBENLİ %T Döner (Spin) Kaplama ile İki Boyutlu Polimerik Nanokompozitlerin Geniş Alanlı Üretimleri %D 2020 %J Akademik Platform Mühendislik ve Fen Bilimleri Dergisi %P -2147-4575 %V 8 %N 1 %R doi: 10.21541/apjes.577446 %U 10.21541/apjes.577446
ISNAD GÖZÜBENLİ, Numan . "Döner (Spin) Kaplama ile İki Boyutlu Polimerik Nanokompozitlerin Geniş Alanlı Üretimleri". Akademik Platform Mühendislik ve Fen Bilimleri Dergisi 8 / 1 (Ocak 2020): 208-216 . https://doi.org/10.21541/apjes.577446
AMA GÖZÜBENLİ N . Döner (Spin) Kaplama ile İki Boyutlu Polimerik Nanokompozitlerin Geniş Alanlı Üretimleri. APJES. 2020; 8(1): 208-216.
Vancouver GÖZÜBENLİ N . Döner (Spin) Kaplama ile İki Boyutlu Polimerik Nanokompozitlerin Geniş Alanlı Üretimleri. Akademik Platform Mühendislik ve Fen Bilimleri Dergisi. 2020; 8(1): 216-208.