Research Article
BibTex RIS Cite

Bira Endüstrisi Atıksularının Elektrokoagülasyon ile Arıtımı ve Hibrit Elektrot Bağlantısının Etkisi

Year 2020, Volume: 8 Issue: 1, 91 - 101, 28.01.2020
https://doi.org/10.21541/apjes.602191

Abstract

Bu çalışmada bir bira fabrikasına
ait atıksuyun arıtımında anot ve katotu farklı metallerden oluşturulmuş
elektrokoagülasyon (EC) yöntemi kullanılarak prosesin arıtma performansı ve
işletme maliyeti analiz edilmiştir. Kesikli işletilen bir EC tankı içerisine
demir (Fe) ve alüminyum (Al) elektrotlar sekiz farklı anot-katot-anot-katot
(A-C-A-C) kombinasyonunda (Al-Al-Al-Al, Fe-Fe-Fe-Fe, Al-Fe-Fe-Fe, Al-Fe-Fe-Al,
Al-Fe-Al-Fe, Fe-Al-Al-Al, Fe-Al-Al-Fe, Fe-Al-Fe-Al) dizilerek, prosesin
atıksudan KOİ ve bulanıklık giderme verimleri ile işletme maliyetleri üzerine
pH, akım yoğunluğu ve elektroliz süresinin etkileri incelenmiştir. Çalışma
sonunda optimum olarak bulunan EC şartlarında (pH 7, akım yoğunluğu: 60 A/m2
ve elektroliz süresi: 30 dak.) KOİ ve bulanıklık giderme verimleri demir elektrotlar
(Fe-Fe-Fe-Fe) kullanıldığında sırasıyla %80 ve %92 olurken, demir-alüminyum
hibrit bağlantılı (Fe-Al-Fe-Al) EC reaktöründe ise %91 ve %97 olarak
gerçekleşmiştir. Bir metreküp bira endüstrisi atıksuyunun seçilen optimum
şartlar altında EC ile arıtımının işletme maliyeti ~35 TL olarak bulunurken,
bir kg KOİ gideriminin maliyeti ise ~12 TL olarak hesaplanmıştır. Çıkış suyu
karakteristikleri dikkate alındığında, gelecekteki çalışmalarda hibrit elektrot
bağlantılı EC sisteminin benzer nitelikteki endüstriyel atıksular için bir ön
arıtma yöntemi olarak kullanılabileceği ve yüksek KOİ konsantrasyonlarını
bertaraf edebilecek bir anaerobik proses ile desteklenebileceği veya bir
oksidasyon prosesini takiben, çıkış suyunu iyileştirme amacıyla son arıtma olarak
değerlendirilebileceği sonucuna varılmıştır.



References

  • [1] A.A. Olajire, “The brewing industry and environmental challenges”, J. Clean. Production, pp. 1-21, 2012.
  • [2] G. Simate, J. Cluett, S. Iyuke, E. Musapatika, S. Ndlovu, L. Walubita, A. Alvarez, “The treatment of brewery wastewater for reuse: state of the art”, Desalination, vol. 273 no 2-3, 235–247, 2011.
  • [3] P. Pal, K. Khairnar, W.N. Paunikar, “Causes and remedies for filamentous foaming in activated sludge treatment plant”, Global NEST, vol. 16 no. pp. 762-772, 2014.
  • [4] L. Braeken, B. Van der Bruggen, C. Vandecasteele, “Regeneration of brewery waste water using nanofiltration”, Wat. Res., vol. 38, no. 13, pp. 3075–3082, 2004.
  • [5] K. Kanagachandran, R. Jayaratne, “Utilization potential of brewery waste water sludge as an organic fertilizer”, J. Inst. Brew., vol. 112, pp. 92–96, 2006.
  • [6] A.G., Brito, J. Peixoto, J.M. Oliveira, J.O., Oliveira, C. Costa, R. Nogueira, A. Rodrigues, Brewery and winery wastewater treatment: Some focal points of design and operation. In: Oreopoulou V., Russ W., editors. Utilization of By-Products and Treatment of Waste in the Food Industry. New York, NY, USA: Springer Science + Business Media Llc.; pp. 109–131, 2007.
  • [7] Y. Feng., X. Wang, B.E. Logan, H. Lee, “Brewery wastewater treatment using air-cathode microbial fuel cells”, Appl. Microbiol. Biotechnol., vol. 78, pp. 873–880, 2008.
  • [8] L.C. Huei, “Biodegradation of Brewery Effluent Using Packed-Bed Upflow Anaerobic Reactor (PBUAR) and Membrane Bioreactor (MBR)” Bachelor Thesis, Universiti Teknologi Malaysia: Faculty of Civil Engineering, Malaysia, 2005.
  • [9] W.S. Al-Rekabi, Q. He, W.W. Qiang, “Improvements in wastewater treatment technologies”, Pak J. Nutr., vol. 6, no. 2, pp. 104–110, 2007.
  • [10] T. Janhom, P. Pavasant, S. Wattanachira, “Profiling and monitoring of DOM in brewery wastewater and treated wastewater”, Environ. Monit. Assess., vol. 176, pp. 403–418, 2011.
  • [11] H. Dai, X. Yang, T. Dong, Y. Ke, T. Wang, “Engineering application of MBR process to the treatment of beer brewing wastewater”, Modern App. Sci., vol. 4, no. 9, pp. 103–109, 2010.
  • [12] L. Li, Q. Wang, X. Li, S. Yang, “Sludge reduction during brewery wastewater treatment by hydrolyzation-food chain reactor system”, Front. Environ. Sci. Eng. China, vol. 2, no. 1, pp. 32–35, 2008.
  • [13] M.C., Menkiti, O.D. Onukwuli, “Coag-flocculation studies of Moringa oleifera coagulant (MOC) in brewery effluent: Nephelometric approach”, J. Am. Sci., vol. 6, no. 12, pp. 788–806, 2010.
  • [14] W. Parawira, I. Kudita, M.G. Nyandoroh, R. Zvauya, “A study of industrial anaerobic treatment of opaque beer brewery wastewa- ter in a tropical climate using a full-scale UASB reactor seeded with activated sludge”, Process. Biochem., vol. 40, no. 2, pp. 593–599, 2005.
  • [15] A.G. Rao, T.S.K. Reddy, S.S. Prakash, J. Vanajakshi, J. Joseph, P.N. Sarma, “pH regulation of alkaline wastewater with carbon dioxide: a case study of treatment of brewery wastewater in UASB reactor coupled with absorber”, Bioresour. Technol., vol. 98, pp. 2131–2136, 2007.
  • [16] C. Cronin, K.V. Lo, “Anaerobic treatment of brewery wastewater using UASB reactors seeded with activated sludge, Bioresour. Technol., vol.64, pp., 33–38, 1998.
  • [17] S.S. Madaeni, Y. Mansourpanah, “Screening membranes for COD removal from dilute wastewater”, Desalination, vol. 197, no. 1–3, pp. 23–32, 2006.
  • [18] M. Bayramoglu, M. Eyvaz, M. Kobya., “Treatment of the textile wastewater by electrocoagulation: economic evaluation”, Chem. Eng. J., vol. 128, pp. 155–161, 2007.
  • [19] M.Y.A. Mollah, P. Morkovsky, J.A.G. Gomes, M. Kesmez, J. Parga, D.L. Cocke, “Fundamentals, present and future perspectives of electrocoagulation” J. Hazard. Mater., vol. 114, pp. 199–210, 2004.
  • [20] M.Y.A. Mollah, R. Schennach, J.R. Parga. D.L. Cocke, “Electrocoagulation EC-science and applications” J. Hazard. Mater., vol. 84, pp. 29–41, 2001.
  • [21] S. Elabbas, N. Ouazzani, L. Mandi, F. Berrekhis, M. Perdicakis, S. Pontvianne, M-N. Pons, F. Lapicque, J-P Leclerc, “Treatment of highly concentrated tannery wastewater using electrocoagulation: Influence of the quality of aluminium used for the electrode” J. Hazard. Mater., vol. 319, pp. 69-77, 2016.
  • [22] T. Yang, B. Qiao, G-C Li, Q-Y. Yang, “Improving performance of dynamic membrane assisted by electrocoagulation for treatment of oily wastewater: Effect of electrolytic conditions”, Desalination, vol. 363, pp. 134–143, 2015.
  • [23] M. Al-Shannag, Z. Al-Qodah, K. Bani-Melhem, M.R. Qtaishat, M. Alkasrawi, “Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance”, Chem. Eng. J. vol. 260, pp. 749-756, 2015.
  • [24] F. Ulu, S. Barışçı, M. Kobya, H. Särkkä, M. Sillanpää, “Removal of humic substances by electrocoagulation (EC) process and characterization of floc size growth mechanism under optimum conditions”, Sep. Purif. Technol., vol. 133, pp. 246-253, 2014.
  • [25] S. Kara, E. Gurbulak, M. Eyvaz, E. Yüksel, “Treatment of Winery Wastewater by Electrocoagulation Process”, Desal. Wat. Treat. vol. 51, no. 28-30, pp. 5421-5429, 2013.
  • [26] M. Eyvaz, E. Gürbulak, S. Kara, E. Yüksel.Preventing of Cathode Passivation/Deposition in Electrochemical Treatment Methods – A Case Study on Winery Wastewater with Electrocoagulation. In: Modern Electrochemical Methods in Nano, Surface and Corrosion Science, Chapter 8, pp. 201-238, Dr. M. Aliofkhazraei (Ed.), London: Intechopen, 2014.
  • [27] M. Bayramoglu, M. Kobya, M. Eyvaz, E. Senturk, “Technical and economic analysis of electrocoagulation for the treatment of poultry slaughterhouse wastewater”, Sep. Purif. Technol., vol 51, pp. 404–408, 2006.
  • [28] F. Ozyonar, B. Karagozoglu, “Investigation of technical and economic analysis of electrocoagulation process for the treatment of great and small cattle slaughterhouse wastewater”, Desal. Wat. Treat., vol. 52, pp. 74-87, 2014.
  • [29] K. Thirugnanasambandham, V. Sivakumar, J.P., Maran, “Response surface modelling and optimization of treatment of meat industry wastewater using electrochemical treatment method”, J. Taiwan Institute Chem. Eng. vol. 46, pp. 160-1677, 2015.
  • [30] G.F.S. Valente, R.C.S. Mendonça, J.A.M. Pereira, L.B. Felix, “Artificial neural network prediction of chemical oxygen demand in dairy industry effluent treated by electrocoagulation”, Sep. Purif. Technol., vol. 132, pp. 627-633, 2014.
  • [31] M. Kobya, A. Akyol, E. Demirbas, M.S. Oncel, “Removal of Arsenic from Drinking Water by Batch and Continuous Electrocoagulation Processes Using Hybrid Al-Fe Plate Electrodes”, Environ. Progress Sustain. Energy, vol. 33, no.1, pp. 131-140, 2014.
  • [32] F. Ozyonar, “Treatment of Train Industry Oily Wastewater by Electrocoagulation with Hybrid Electrode Pairs and Different Electrode Connection Modes”, Int. J. Electrochem. Sci., vol. 11, pp. 1456 – 1471, 2016.
  • [33] S. Barisci, O. Turkay, “Domestic greywater treatment by electrocoagulation using hybrid electrode combinations”, J. Wat. Process Eng., vol. 10, pp. 56-66, 2016.
  • [34] M. Kobya, M. Bayramoglu, M. Eyvaz, “Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections” J. Hazard. Mater. vol. 148, no. 1-2, pp. 311-318, 2007.
  • [35] American Public Health Association (APHA), Standard method for examination of water and wastewater, 21st edn. Washington: APHA, AWWA, WPCF, 2005.
  • [36] V. Khandegar, A.K. Saroha, “Electrochemical Treatment of Distillery Spent Wash Using Aluminum and Iron Electrodes”, Chinese J. Chem. Eng., vol. 20, no. 3, pp. 439-443, 2013.
  • [37] M. Eyvaz, M. Kirlaroglu, T.S. Aktas, E. Yuksel, “The effects of alternating current electrocoagulation on dye removal from aqueous solutions” Chem. Eng. J. vol. 153, no. 1–3, pp. 16-22, 2009.
  • [38] C.A. Martínez-Huitle, E. Brillas, “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review”, App. Catalysis B: Environ., vol. 87, pp. 105–145, 2009.
  • [39] Z. Zaroual, M. Azzi, N. Saib, E. Chainet, “Contribution to the study of electrocoagulation mechanism in basic textile effluent” J. Hazard. Mater., vol. 131, pp. 73-78, 2006.
  • [40] J.G. Ibanez, M.M. Singh, Z. Szafran, “Laboratory experiments on electrochemical remediation of the environment Part 4 Color removal of simulated wastewater by electrocoagulation–electrocflotation”, J. Chem. Education, vol 75, pp. 1040–1041, 1998.
  • [41] M. Kobya, H. Hiz, E. Senturk, C. Aydiner, E. Demirbas, “Treatment of potato chips manufacturing wastewater by electrocoagulation”, Desalination, vol. 190, pp. 201–211, 2006.
  • [42] M. Kobya, F. Ulu, U. Gebologlu, E. Demirbas, M.S. Oncel, “Treatment of potable water containing low concentration of arsenic with electrocoagulation: Different connection modes and Fe-Al electrodes”, Sep. Purif. Technol., vol. 77, pp. 283–293, 2011.
  • [43]. M. Kobya, U. Gebologlu, F. Ulu, M.S. Oncel, E. Demirbas, “Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes”, Electrochimica Acta, vol. 56, pp. 5060–5070, 2011.
  • [44] M.F. Pouet, A. Grasmick, “Urban wastewater treatment by electrocoagulation and flotation”, Wat. Sci. Technol., vol. 31, pp. 275–283, 1995.
  • [45] G. Chen, “Electrochemical technologies in wastewater treatment”, Sep. Purif. Technol., vol. 38, no.1, pp. 11-41, 2004.
  • [46] M. P. Wagh, P.D. Nemade, “Treatment of Distillery Spent Wash by Using Coagulation and Electrocoagulation [EC]”, American J. Environ. Protection, vol. 3, no. 5, pp. 159-162, 2015.
  • [47] M. Kumar, F. I. A. Ponselvan, J. R. Malviya, V. C. Srivastava, I. D. Mall, “Treatment of bio-digester effluent by electrocoagulation using iron electrodes,” J. Hazard. Mater., vol. 165, pp. 345–352, 2009.
  • [48] B. M. Krishna, U. N. Murthy, B. Manoj Kumar, and K. S. Lokesh, “Electrochemical pretreatment of distillery wastewater using aluminum electrode,” J. Appl. Electrochem., vol. 40, no. 3, pp. 663–673, 2010.
  • [49] M. Damaraju, D. Bhattacharyya, T Panda, K.K. Kurilla, “Application of a Continuous Bipolar Mode Electrocoagulation (CBME) system for polishing distillery wastewater” E3S Web of Conferences 93, 02005 (2019).
  • [50] P. Manisankar, C. Rani, S. Viswanathan, “Effect of halides in the electrochemical treatment of distillery effluent”, Chemosphere, vol. 57, pp. 961–966, 2004.
  • [51] S. Basu, S. Mukherjee, A. Kaushik, V.S. Batra, M. Balakrishnan, “Integrated treatment of molasses distillery wastewater using microfiltration (MF)”, J. Environ. Manag., vol. 158, pp. 55-60, 2015.
  • [52] A.R.A. Aziz, P. Asaithambi, W.M.A.B.D. Daud, “Combination of electrocoagulation with advanced oxidation processes for the treatment of distillery industrial effluent”, Process Safety Environ. Protec., vol. 99, pp. 227-235, 2016.
  • [53] N. Kannan, G. Karthikeyan, N. Tamilselvan, “Comparison of treatment potential of electrocoagulation of distillery effluent with and without activated Areca catechu nut carbon”, J. Hazard. Mater., vol. 137, no. 3, 1803-1809, 2006.
  • [54] C. Thakur, V.C. Srivastava, I.D. Mall, “Electrochemical treatment of a distillery wastewater: Parametric and residue disposal study”, Chem. Eng. J., vol. 148, no. 3, pp. 496-505, 2009.
  • [55] P. Asaithambi, M. Susree, R. Saravanathamizhan, M. Matheswaran, “Ozone assisted electrocoagulation for the treatment of distillery effluent”, Desal., vol. 297, pp. 1-7, 2012.

Treatment of Brewing Wastewater by Electrocoagulation and Effect of Hybrid Electrode Connection

Year 2020, Volume: 8 Issue: 1, 91 - 101, 28.01.2020
https://doi.org/10.21541/apjes.602191

Abstract

In this study,
an EC process composed of the different anode and cathode materials was used
for the treatment of brewery wastewater and the treatment performance and
operating cost were analyzed. Iron (Fe) and aluminum (Al) electrodes are
arranged in eight different anode-cathode-anode-cathode (A-C-A-C) combinations
(Al-Al-Al-Al, Fe-Fe-Fe-Fe, Al-Fe-Fe-Fe, Al-Fe-Fe-Al, Al-Fe-Al-Fe, Fe-Al-Al-Al,
Fe-Al-Al-Fe, Fe-Al-Fe-Al) and the effects of pH, current density and
electrolysis time on COD and turbidity removal efficiencies and operating costs
were investigated. At the end of the study, at the optimum EC conditions (pH 7,
current density: 60 A/m2 and electrolysis time: 30 min) COD and
turbidity removal efficiencies were 80% and 92%, respectively, for iron
electrodes (Fe-Fe-Fe-Fe) and 91% and 97% for EC reactor with iron-aluminum
hybrid (Fe-Al-Fe-Al) electrodes. The operating cost of one cubic meter of beer
industry wastewater treatment with EC under the optimum conditions was
calculated as ~ 35 TL and the cost of one kg COD removal was calculated as ~ 12
TL. Considering the effluent characteristics, in future studies it can be
concluded that the hybrid electrode-EC system can be used as a pre-treatment
method for similar industrial wastewaters and can be integrated with an
anaerobic process that can reduce high COD concentrations or can be considered
as the final treatment for the treatment of effluent following an oxidation
process.



References

  • [1] A.A. Olajire, “The brewing industry and environmental challenges”, J. Clean. Production, pp. 1-21, 2012.
  • [2] G. Simate, J. Cluett, S. Iyuke, E. Musapatika, S. Ndlovu, L. Walubita, A. Alvarez, “The treatment of brewery wastewater for reuse: state of the art”, Desalination, vol. 273 no 2-3, 235–247, 2011.
  • [3] P. Pal, K. Khairnar, W.N. Paunikar, “Causes and remedies for filamentous foaming in activated sludge treatment plant”, Global NEST, vol. 16 no. pp. 762-772, 2014.
  • [4] L. Braeken, B. Van der Bruggen, C. Vandecasteele, “Regeneration of brewery waste water using nanofiltration”, Wat. Res., vol. 38, no. 13, pp. 3075–3082, 2004.
  • [5] K. Kanagachandran, R. Jayaratne, “Utilization potential of brewery waste water sludge as an organic fertilizer”, J. Inst. Brew., vol. 112, pp. 92–96, 2006.
  • [6] A.G., Brito, J. Peixoto, J.M. Oliveira, J.O., Oliveira, C. Costa, R. Nogueira, A. Rodrigues, Brewery and winery wastewater treatment: Some focal points of design and operation. In: Oreopoulou V., Russ W., editors. Utilization of By-Products and Treatment of Waste in the Food Industry. New York, NY, USA: Springer Science + Business Media Llc.; pp. 109–131, 2007.
  • [7] Y. Feng., X. Wang, B.E. Logan, H. Lee, “Brewery wastewater treatment using air-cathode microbial fuel cells”, Appl. Microbiol. Biotechnol., vol. 78, pp. 873–880, 2008.
  • [8] L.C. Huei, “Biodegradation of Brewery Effluent Using Packed-Bed Upflow Anaerobic Reactor (PBUAR) and Membrane Bioreactor (MBR)” Bachelor Thesis, Universiti Teknologi Malaysia: Faculty of Civil Engineering, Malaysia, 2005.
  • [9] W.S. Al-Rekabi, Q. He, W.W. Qiang, “Improvements in wastewater treatment technologies”, Pak J. Nutr., vol. 6, no. 2, pp. 104–110, 2007.
  • [10] T. Janhom, P. Pavasant, S. Wattanachira, “Profiling and monitoring of DOM in brewery wastewater and treated wastewater”, Environ. Monit. Assess., vol. 176, pp. 403–418, 2011.
  • [11] H. Dai, X. Yang, T. Dong, Y. Ke, T. Wang, “Engineering application of MBR process to the treatment of beer brewing wastewater”, Modern App. Sci., vol. 4, no. 9, pp. 103–109, 2010.
  • [12] L. Li, Q. Wang, X. Li, S. Yang, “Sludge reduction during brewery wastewater treatment by hydrolyzation-food chain reactor system”, Front. Environ. Sci. Eng. China, vol. 2, no. 1, pp. 32–35, 2008.
  • [13] M.C., Menkiti, O.D. Onukwuli, “Coag-flocculation studies of Moringa oleifera coagulant (MOC) in brewery effluent: Nephelometric approach”, J. Am. Sci., vol. 6, no. 12, pp. 788–806, 2010.
  • [14] W. Parawira, I. Kudita, M.G. Nyandoroh, R. Zvauya, “A study of industrial anaerobic treatment of opaque beer brewery wastewa- ter in a tropical climate using a full-scale UASB reactor seeded with activated sludge”, Process. Biochem., vol. 40, no. 2, pp. 593–599, 2005.
  • [15] A.G. Rao, T.S.K. Reddy, S.S. Prakash, J. Vanajakshi, J. Joseph, P.N. Sarma, “pH regulation of alkaline wastewater with carbon dioxide: a case study of treatment of brewery wastewater in UASB reactor coupled with absorber”, Bioresour. Technol., vol. 98, pp. 2131–2136, 2007.
  • [16] C. Cronin, K.V. Lo, “Anaerobic treatment of brewery wastewater using UASB reactors seeded with activated sludge, Bioresour. Technol., vol.64, pp., 33–38, 1998.
  • [17] S.S. Madaeni, Y. Mansourpanah, “Screening membranes for COD removal from dilute wastewater”, Desalination, vol. 197, no. 1–3, pp. 23–32, 2006.
  • [18] M. Bayramoglu, M. Eyvaz, M. Kobya., “Treatment of the textile wastewater by electrocoagulation: economic evaluation”, Chem. Eng. J., vol. 128, pp. 155–161, 2007.
  • [19] M.Y.A. Mollah, P. Morkovsky, J.A.G. Gomes, M. Kesmez, J. Parga, D.L. Cocke, “Fundamentals, present and future perspectives of electrocoagulation” J. Hazard. Mater., vol. 114, pp. 199–210, 2004.
  • [20] M.Y.A. Mollah, R. Schennach, J.R. Parga. D.L. Cocke, “Electrocoagulation EC-science and applications” J. Hazard. Mater., vol. 84, pp. 29–41, 2001.
  • [21] S. Elabbas, N. Ouazzani, L. Mandi, F. Berrekhis, M. Perdicakis, S. Pontvianne, M-N. Pons, F. Lapicque, J-P Leclerc, “Treatment of highly concentrated tannery wastewater using electrocoagulation: Influence of the quality of aluminium used for the electrode” J. Hazard. Mater., vol. 319, pp. 69-77, 2016.
  • [22] T. Yang, B. Qiao, G-C Li, Q-Y. Yang, “Improving performance of dynamic membrane assisted by electrocoagulation for treatment of oily wastewater: Effect of electrolytic conditions”, Desalination, vol. 363, pp. 134–143, 2015.
  • [23] M. Al-Shannag, Z. Al-Qodah, K. Bani-Melhem, M.R. Qtaishat, M. Alkasrawi, “Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance”, Chem. Eng. J. vol. 260, pp. 749-756, 2015.
  • [24] F. Ulu, S. Barışçı, M. Kobya, H. Särkkä, M. Sillanpää, “Removal of humic substances by electrocoagulation (EC) process and characterization of floc size growth mechanism under optimum conditions”, Sep. Purif. Technol., vol. 133, pp. 246-253, 2014.
  • [25] S. Kara, E. Gurbulak, M. Eyvaz, E. Yüksel, “Treatment of Winery Wastewater by Electrocoagulation Process”, Desal. Wat. Treat. vol. 51, no. 28-30, pp. 5421-5429, 2013.
  • [26] M. Eyvaz, E. Gürbulak, S. Kara, E. Yüksel.Preventing of Cathode Passivation/Deposition in Electrochemical Treatment Methods – A Case Study on Winery Wastewater with Electrocoagulation. In: Modern Electrochemical Methods in Nano, Surface and Corrosion Science, Chapter 8, pp. 201-238, Dr. M. Aliofkhazraei (Ed.), London: Intechopen, 2014.
  • [27] M. Bayramoglu, M. Kobya, M. Eyvaz, E. Senturk, “Technical and economic analysis of electrocoagulation for the treatment of poultry slaughterhouse wastewater”, Sep. Purif. Technol., vol 51, pp. 404–408, 2006.
  • [28] F. Ozyonar, B. Karagozoglu, “Investigation of technical and economic analysis of electrocoagulation process for the treatment of great and small cattle slaughterhouse wastewater”, Desal. Wat. Treat., vol. 52, pp. 74-87, 2014.
  • [29] K. Thirugnanasambandham, V. Sivakumar, J.P., Maran, “Response surface modelling and optimization of treatment of meat industry wastewater using electrochemical treatment method”, J. Taiwan Institute Chem. Eng. vol. 46, pp. 160-1677, 2015.
  • [30] G.F.S. Valente, R.C.S. Mendonça, J.A.M. Pereira, L.B. Felix, “Artificial neural network prediction of chemical oxygen demand in dairy industry effluent treated by electrocoagulation”, Sep. Purif. Technol., vol. 132, pp. 627-633, 2014.
  • [31] M. Kobya, A. Akyol, E. Demirbas, M.S. Oncel, “Removal of Arsenic from Drinking Water by Batch and Continuous Electrocoagulation Processes Using Hybrid Al-Fe Plate Electrodes”, Environ. Progress Sustain. Energy, vol. 33, no.1, pp. 131-140, 2014.
  • [32] F. Ozyonar, “Treatment of Train Industry Oily Wastewater by Electrocoagulation with Hybrid Electrode Pairs and Different Electrode Connection Modes”, Int. J. Electrochem. Sci., vol. 11, pp. 1456 – 1471, 2016.
  • [33] S. Barisci, O. Turkay, “Domestic greywater treatment by electrocoagulation using hybrid electrode combinations”, J. Wat. Process Eng., vol. 10, pp. 56-66, 2016.
  • [34] M. Kobya, M. Bayramoglu, M. Eyvaz, “Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections” J. Hazard. Mater. vol. 148, no. 1-2, pp. 311-318, 2007.
  • [35] American Public Health Association (APHA), Standard method for examination of water and wastewater, 21st edn. Washington: APHA, AWWA, WPCF, 2005.
  • [36] V. Khandegar, A.K. Saroha, “Electrochemical Treatment of Distillery Spent Wash Using Aluminum and Iron Electrodes”, Chinese J. Chem. Eng., vol. 20, no. 3, pp. 439-443, 2013.
  • [37] M. Eyvaz, M. Kirlaroglu, T.S. Aktas, E. Yuksel, “The effects of alternating current electrocoagulation on dye removal from aqueous solutions” Chem. Eng. J. vol. 153, no. 1–3, pp. 16-22, 2009.
  • [38] C.A. Martínez-Huitle, E. Brillas, “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review”, App. Catalysis B: Environ., vol. 87, pp. 105–145, 2009.
  • [39] Z. Zaroual, M. Azzi, N. Saib, E. Chainet, “Contribution to the study of electrocoagulation mechanism in basic textile effluent” J. Hazard. Mater., vol. 131, pp. 73-78, 2006.
  • [40] J.G. Ibanez, M.M. Singh, Z. Szafran, “Laboratory experiments on electrochemical remediation of the environment Part 4 Color removal of simulated wastewater by electrocoagulation–electrocflotation”, J. Chem. Education, vol 75, pp. 1040–1041, 1998.
  • [41] M. Kobya, H. Hiz, E. Senturk, C. Aydiner, E. Demirbas, “Treatment of potato chips manufacturing wastewater by electrocoagulation”, Desalination, vol. 190, pp. 201–211, 2006.
  • [42] M. Kobya, F. Ulu, U. Gebologlu, E. Demirbas, M.S. Oncel, “Treatment of potable water containing low concentration of arsenic with electrocoagulation: Different connection modes and Fe-Al electrodes”, Sep. Purif. Technol., vol. 77, pp. 283–293, 2011.
  • [43]. M. Kobya, U. Gebologlu, F. Ulu, M.S. Oncel, E. Demirbas, “Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes”, Electrochimica Acta, vol. 56, pp. 5060–5070, 2011.
  • [44] M.F. Pouet, A. Grasmick, “Urban wastewater treatment by electrocoagulation and flotation”, Wat. Sci. Technol., vol. 31, pp. 275–283, 1995.
  • [45] G. Chen, “Electrochemical technologies in wastewater treatment”, Sep. Purif. Technol., vol. 38, no.1, pp. 11-41, 2004.
  • [46] M. P. Wagh, P.D. Nemade, “Treatment of Distillery Spent Wash by Using Coagulation and Electrocoagulation [EC]”, American J. Environ. Protection, vol. 3, no. 5, pp. 159-162, 2015.
  • [47] M. Kumar, F. I. A. Ponselvan, J. R. Malviya, V. C. Srivastava, I. D. Mall, “Treatment of bio-digester effluent by electrocoagulation using iron electrodes,” J. Hazard. Mater., vol. 165, pp. 345–352, 2009.
  • [48] B. M. Krishna, U. N. Murthy, B. Manoj Kumar, and K. S. Lokesh, “Electrochemical pretreatment of distillery wastewater using aluminum electrode,” J. Appl. Electrochem., vol. 40, no. 3, pp. 663–673, 2010.
  • [49] M. Damaraju, D. Bhattacharyya, T Panda, K.K. Kurilla, “Application of a Continuous Bipolar Mode Electrocoagulation (CBME) system for polishing distillery wastewater” E3S Web of Conferences 93, 02005 (2019).
  • [50] P. Manisankar, C. Rani, S. Viswanathan, “Effect of halides in the electrochemical treatment of distillery effluent”, Chemosphere, vol. 57, pp. 961–966, 2004.
  • [51] S. Basu, S. Mukherjee, A. Kaushik, V.S. Batra, M. Balakrishnan, “Integrated treatment of molasses distillery wastewater using microfiltration (MF)”, J. Environ. Manag., vol. 158, pp. 55-60, 2015.
  • [52] A.R.A. Aziz, P. Asaithambi, W.M.A.B.D. Daud, “Combination of electrocoagulation with advanced oxidation processes for the treatment of distillery industrial effluent”, Process Safety Environ. Protec., vol. 99, pp. 227-235, 2016.
  • [53] N. Kannan, G. Karthikeyan, N. Tamilselvan, “Comparison of treatment potential of electrocoagulation of distillery effluent with and without activated Areca catechu nut carbon”, J. Hazard. Mater., vol. 137, no. 3, 1803-1809, 2006.
  • [54] C. Thakur, V.C. Srivastava, I.D. Mall, “Electrochemical treatment of a distillery wastewater: Parametric and residue disposal study”, Chem. Eng. J., vol. 148, no. 3, pp. 496-505, 2009.
  • [55] P. Asaithambi, M. Susree, R. Saravanathamizhan, M. Matheswaran, “Ozone assisted electrocoagulation for the treatment of distillery effluent”, Desal., vol. 297, pp. 1-7, 2012.
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Murat Eyvaz 0000-0003-2964-9586

Publication Date January 28, 2020
Submission Date August 5, 2019
Published in Issue Year 2020 Volume: 8 Issue: 1

Cite

IEEE M. Eyvaz, “Bira Endüstrisi Atıksularının Elektrokoagülasyon ile Arıtımı ve Hibrit Elektrot Bağlantısının Etkisi”, APJES, vol. 8, no. 1, pp. 91–101, 2020, doi: 10.21541/apjes.602191.