Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Amplification Factor for Adapazarı Soil with High Liquefaction Potential

Yıl 2020, Cilt: 8 Sayı: 2, 266 - 273, 26.05.2020
https://doi.org/10.21541/apjes.581950

Öz

In this study, the soil amplification which is caused by the earthquake wave moving from the bedrock to the soil surface on weak soil with high liquefaction potential was investigated. Regional geology and basic soil conditions can significantly change the characteristics of ground motion. For this reason, it is a very important issue for researchers to determine the soil amplification during an earthquake, especially for soft soils. The soil profile of an existing structure in the Tığcılar neigbodhood of Adapazarı district was used in the study. The characteristics of the earthquake wave moving from the depth of the soil to the soil surface during the earthquake are changing. This change depends on the characteristics of the soil layers. The earthquake wave emitted from the main rock passes through the soil layers and amplification on the soil surface. Vertical acceleration and horizontal acceleration change as a result of the analyses made on the models established with the help of FLAC 2D program were investigated. As a result of the current study, soil characteristics increase the ground motion. Due to the amplification on the soil, it appears that it can exceed the proposed design spectra. Local soil conditions must be taken into account on soils such as the Adapazari region.

Kaynakça

  • [1] Yılmaz D, Durgunoğlu T (2004) Zemin Mekaniği ve Temel Mühendisliği Onuncu Ulusal Kongresi 16-17 Eylül 2004, İstanbul Teknik Üniversitesi, İstanbul
  • [2] Sancio RB (2003) Ground failure and building performance in Adapazari, Turkey. PhD thesis, Univ. of California at Berkeley, Berkeley, California
  • [3] Abrahamson,N., Atkinson,G., Boore,D., Bozorginia,Y.,Campbell,K., Chiou,B., Idriss, I.M., Silva, W., Youngs,R. (2008) Comparisons of the NGA Ground-Motion Relations. Earthquake Spectra 24:1, 45-66
  • [4] Borcherdt, R.D. (1994). Estimates of Site Dependent Response Spectra for Design (Methodology and Justification). Earthquake Spectra 10:4, 617-654
  • [5] Ansal, A., Tönük, G. (2010). Seismic microzonation and earthquake damage scenariosfor urban areas. Soil Dynamics and Earthquake Engineering 30, 1319-1328
  • [6] Önalp A, Sert S, Bol E (2000) Zemin Mekaniği ve Temel Mühendisliği Sekizinci Ulusal Kongresi 26-27 Ekim 2000, İstanbul Teknik Üniversitesi, İstanbul
  • [7] Kutanis M, Bal IE (2006) Local soil conditions effect on structural damage distribution. In: 11th soil mechanics and foundation engineering congress, Trabzon, pp 99–113 (in Turkish)
  • [8] Bakir BS, Yilmaz MT, Yakut A, Gulkan P (2005) Re-examination of damage distribution in Adapazarı: geotechnical considerations. Eng Struct 27:1002–1013
  • [9] Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, Englewood Cliffs
  • [10] Biringen E (2000) Soil amplification and case studies for clayey soils. Master thesis, Bogazici University, Istanbul
  • [11] Yalcinkaya E (2004) Investigation of parameters affecting the soil amplification for 1-D models. Istanbul Univ Eng Fac Earth Sci Rev 17(1):47–56 (in Turkish)
  • [12] Tezcan SS, Kaya E, Bal IE, Ozdemir Z (2002) Seismic amplification at Avcilar, Istanbul. Eng Struct 24:661–667
  • [13] Ansal, A. ve Tönük, G. (2007). Source and Site Effects for Microzonation. Theme Lecture, 4th International Conference on Earthquake Geotechnical Engineering, Earthquake Geotechnical Engineering, Editör: K.Pitilakis, Bölüm4, 73-92, Springer.
  • [14] Idriss, I. M. ve J. I. Sun (1992). Shake91, A Computer Program for Conducting Equivalent Linear Seismic Response Analysis of Horizontally Layered Soil Deposits, Modified based on the original SHAKE program by Schnabel, Lysmer and Seed, 1972.
  • [15] Yoshida, N., S. Kobayashia, I. Suetomia ve K. Miura (2002). Equivalent linear method considering frequency dependent characteristics of stiffness and damping.Soil Dynamics and Earthquake Engineering 22:3, 205-222.
  • [16] Fırat S, Işık N, Arman H, Demir M, Vural İi, Bulletin of Engineering Geology and the Environment (2016) 75:141-152.(2015)
  • [17] Anbazhagan P, Sitharam TG (2009) Spatial variability of the weathered and engineering bedrock using multichannel analysis of surface wave survey. Pure appl Geophys 166(3):409–428
  • [18] Demir M (2007) Investigation of soil amplification factor in Adapazari region. Master thesis, Sakarya University, Adapazari (in Turkish)
  • [19] www.mta.gov.tr/deprem/zemin.jpg

Sıvılaşma Potansiyeli Yüksek Adapazarı Zeminleri için Büyütme Faktörünün Araştırılması

Yıl 2020, Cilt: 8 Sayı: 2, 266 - 273, 26.05.2020
https://doi.org/10.21541/apjes.581950

Öz

Bu çalışmada, sıvılaşma potansiyeli yüksek zayıf zeminlerde anakayadan zemin yüzeyine doğru hareket eden deprem dalgasına etki eden zemin büyütme faktörü araştırılmıştır. Bölgesel jeoloji ve temel zemini şartları, yer hareketinin özelliklerini önemli ölçüde değiştirebilir. Bu nedenle, özellikle yumuşak zeminler için, bir deprem sırasında zemin büyütmesinin belirlenmesi, araştırmacılar için çok önemli bir konudur. Araştırmada Adapazarı ilçesi, Tığcılar mahallesindeki mevcut bir yapının zemin profili kullanılmıştır. Deprem sırasında zeminin derinliklerinden zemin yüzeyine doğru hareket eden deprem dalgasının büyüklüğü değişmektedir. Bu değişim zemin tabakalarının özelliklerine bağlı olarak gerçekleşmektedir. Ana kayadan gelen deprem dalgası zemin tabakalarından geçerek zemin yüzeyinde büyümektedir. FLAC 2D programı yardımı ile kurulan modellerde yapılan analizler sonucu oluşacak düşey ve yatay ivme değişimleri incelenmiştir. Yapılan çalışmanın sonucunda zemin özelliklerinin yer hareketini artırdığı görülmektedir. Zemin büyütme etkisi nedeniyle önerilen tasarım spektrumlarını aşılabileceği görülmektedir. Adapazarı bölgesi gibi yumuşak zeminlere sahip ortamlarda yerel zemin koşullarının dikkate alınması gerekmektedir.

Kaynakça

  • [1] Yılmaz D, Durgunoğlu T (2004) Zemin Mekaniği ve Temel Mühendisliği Onuncu Ulusal Kongresi 16-17 Eylül 2004, İstanbul Teknik Üniversitesi, İstanbul
  • [2] Sancio RB (2003) Ground failure and building performance in Adapazari, Turkey. PhD thesis, Univ. of California at Berkeley, Berkeley, California
  • [3] Abrahamson,N., Atkinson,G., Boore,D., Bozorginia,Y.,Campbell,K., Chiou,B., Idriss, I.M., Silva, W., Youngs,R. (2008) Comparisons of the NGA Ground-Motion Relations. Earthquake Spectra 24:1, 45-66
  • [4] Borcherdt, R.D. (1994). Estimates of Site Dependent Response Spectra for Design (Methodology and Justification). Earthquake Spectra 10:4, 617-654
  • [5] Ansal, A., Tönük, G. (2010). Seismic microzonation and earthquake damage scenariosfor urban areas. Soil Dynamics and Earthquake Engineering 30, 1319-1328
  • [6] Önalp A, Sert S, Bol E (2000) Zemin Mekaniği ve Temel Mühendisliği Sekizinci Ulusal Kongresi 26-27 Ekim 2000, İstanbul Teknik Üniversitesi, İstanbul
  • [7] Kutanis M, Bal IE (2006) Local soil conditions effect on structural damage distribution. In: 11th soil mechanics and foundation engineering congress, Trabzon, pp 99–113 (in Turkish)
  • [8] Bakir BS, Yilmaz MT, Yakut A, Gulkan P (2005) Re-examination of damage distribution in Adapazarı: geotechnical considerations. Eng Struct 27:1002–1013
  • [9] Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, Englewood Cliffs
  • [10] Biringen E (2000) Soil amplification and case studies for clayey soils. Master thesis, Bogazici University, Istanbul
  • [11] Yalcinkaya E (2004) Investigation of parameters affecting the soil amplification for 1-D models. Istanbul Univ Eng Fac Earth Sci Rev 17(1):47–56 (in Turkish)
  • [12] Tezcan SS, Kaya E, Bal IE, Ozdemir Z (2002) Seismic amplification at Avcilar, Istanbul. Eng Struct 24:661–667
  • [13] Ansal, A. ve Tönük, G. (2007). Source and Site Effects for Microzonation. Theme Lecture, 4th International Conference on Earthquake Geotechnical Engineering, Earthquake Geotechnical Engineering, Editör: K.Pitilakis, Bölüm4, 73-92, Springer.
  • [14] Idriss, I. M. ve J. I. Sun (1992). Shake91, A Computer Program for Conducting Equivalent Linear Seismic Response Analysis of Horizontally Layered Soil Deposits, Modified based on the original SHAKE program by Schnabel, Lysmer and Seed, 1972.
  • [15] Yoshida, N., S. Kobayashia, I. Suetomia ve K. Miura (2002). Equivalent linear method considering frequency dependent characteristics of stiffness and damping.Soil Dynamics and Earthquake Engineering 22:3, 205-222.
  • [16] Fırat S, Işık N, Arman H, Demir M, Vural İi, Bulletin of Engineering Geology and the Environment (2016) 75:141-152.(2015)
  • [17] Anbazhagan P, Sitharam TG (2009) Spatial variability of the weathered and engineering bedrock using multichannel analysis of surface wave survey. Pure appl Geophys 166(3):409–428
  • [18] Demir M (2007) Investigation of soil amplification factor in Adapazari region. Master thesis, Sakarya University, Adapazari (in Turkish)
  • [19] www.mta.gov.tr/deprem/zemin.jpg
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mustafa Ildır 0000-0001-9947-8044

İsa Vural

Süheyl Kılıç Bu kişi benim

Yayımlanma Tarihi 26 Mayıs 2020
Gönderilme Tarihi 25 Haziran 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 8 Sayı: 2

Kaynak Göster

IEEE M. Ildır, İ. Vural, ve S. Kılıç, “Sıvılaşma Potansiyeli Yüksek Adapazarı Zeminleri için Büyütme Faktörünün Araştırılması”, APJES, c. 8, sy. 2, ss. 266–273, 2020, doi: 10.21541/apjes.581950.