Araştırma Makalesi
BibTex RIS Kaynak Göster

Zeolit İkameli Geopolimer Betonlarda Kür Şartlarının Etkileri

Yıl 2020, Cilt: 8 Sayı: 2, 396 - 402, 26.05.2020
https://doi.org/10.21541/apjes.688186

Öz

Küresel ısınmanın zararlı etkileri artarak devam etmektedir. İnşaat sektörünün en önemli yapı malzemelerinden biri olan çimentonun, yüksek enerji tüketen üretim süreci bakımından çevreye olumsuz etkileri olduğu bilinmektedir. Bu zararlı etkilerin azaltılması, çimento üretimi ile doğrudan ilişkilidir. Bu nedenle son yıllarda çimento kullanılmadan üretilebilen çevreci yapı malzemelerine olan ilgi artmıştır. Bu çalışmada, Yüksek Fırın Cürufu (YFC) ile ağırlıkça %5, %10 ve %15 oranlarında zeolit ikame edilerek geopolimer beton karışımları üretilmiştir. Farklı kür şartlarının zeolit içeren geopolimer beton numuneler üzerindeki etkisinin değerlendirilmesi amacıyla üretilen geopolimer beton numuneler 3 farklı kür ortamında (25 oC hava kürü, 25 oC su kürü ve 60 oC su kürü) dayanım kazanmıştır. Kür sonrası sertleşmiş geopolimer beton numuneler üzerinde 3, 7 ve 28 gün sonunda basınç dayanımı testleri gerçekleştirilmiştir. Ayrıca, 28 günlük kür süresini takiben yoğunluk ve aşınma deneyleri gerçekleştirilmiştir. Sonuç olarak %5, %10 ve %15 zeolit içeren ve farklı kür şartlarının etkisinin incelendiği geopolimer betonların dayanım ve aşınma özelliklerinin zamana bağlı değişimi karşılaştırmalı olarak değerlendirilmiştir. Genel olarak kür şartlarının değişiminin geopolimer betonların basınç dayanımı ve aşınma dirençlerini etkilediği görülmüştür. En yüksek dayanım değerine (88 MPa) sıcak su kürü (60 °C) uygulanan numuneler ulaşmıştır. Geopolimer beton içerisinde, zeolit kullanım miktarının artmasının aşınma direncine pozitif katkı sağladığını görülmüştür. Sıcak su kürünün (60 °C) aşınma kayıplarını azaltıcı etkisi olduğu gözlemlenmiştir

Kaynakça

  • [1] G. V. P. Bhagath Singh and K. V. L. Subramaniam, "Production and characterization of low-energy Portland composite cement from post-industrial waste," Journal of Cleaner Production, vol. 239, p. 118024, 2019/12/01/ 2019.
  • [2] J. Wang, Y. Dai, and L. Gao, "Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry," Applied Energy, vol. 86, no. 6, pp. 941-948, 2009/06/01/ 2009.
  • [3] W. Zhang, A. Maleki, M. G. Khajeh, Y. Zhang, S. M. Mortazavi, and A. Vasel-Be-Hagh, "A novel framework for integrated energy optimization of a cement plant: An industrial case study," Sustainable Energy Technologies and Assessments, vol. 35, pp. 245-256, 2019/10/01/ 2019.
  • [4] A. Nikolov, H. Nugteren, and I. Rostovsky, "Optimization of geopolymers based on natural zeolite clinoptilolite by calcination and use of aluminate activators," Construction and Building Materials, vol. 243, p. 118257, 2020/05/20/ 2020.
  • [5] B. C. McLellan, R. P. Williams, J. Lay, A. van Riessen, and G. D. Corder, "Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement," Journal of Cleaner Production, vol. 19, no. 9, pp. 1080-1090, 2011/06/01/ 2011.
  • [6] P. Rożek, M. Król, and W. Mozgawa, "Geopolymer-zeolite composites: A review," Journal of Cleaner Production, vol. 230, pp. 557-579, 2019/09/01/ 2019.
  • [7] A. Buchwald, H. D. Zellmann, and C. Kaps, "Condensation of aluminosilicate gels—model system for geopolymer binders," Journal of Non-Crystalline Solids, vol. 357, no. 5, pp. 1376-1382, 2011/03/01/ 2011.
  • [8] E. Papa et al., "Zeolite-geopolymer composite materials: Production and characterization," Journal of Cleaner Production, vol. 171, pp. 76-84, 2018/01/10/ 2018.
  • [9] S. Park and M. Pour-Ghaz, "What is the role of water in the geopolymerization of metakaolin?," Construction and Building Materials, vol. 182, pp. 360-370, 2018/09/10/ 2018.
  • [10] S. Mesgari, A. Akbarnezhad, and J. Z. Xiao, "Recycled geopolymer aggregates as coarse aggregates for Portland cement concrete and geopolymer concrete: Effects on mechanical properties," Construction and Building Materials, vol. 236, p. 117571, 2020/03/10/ 2020.
  • [11] N. A. Ulloa, H. Baykara, M. H. Cornejo, A. Rigail, C. Paredes, and J. L. Villalba, "Application-oriented mix design optimization and characterization of zeolite-based geopolymer mortars," Construction and Building Materials, vol. 174, pp. 138-149, 2018/06/20/ 2018.
  • [12] A. Sudagar et al., "A novel study on the influence of cork waste residue on metakaolin-zeolite based geopolymers," Applied Clay Science, vol. 152, pp. 196-210, 2018/02/01/ 2018.

The Effects of Curing Condition on Geopolymers Incorporating Zeolit

Yıl 2020, Cilt: 8 Sayı: 2, 396 - 402, 26.05.2020
https://doi.org/10.21541/apjes.688186

Öz

The harmful effects of global warming increasingly continue. Cement, one of the most important building materials of the construction industry, has negative effects on the environment in terms of its production process which consumes high energy. Reducing these harmful effects is directly related to cement production. Therefore, interest in environmentally friendly building materials, which can be produced without cement, has increased in recent years. In this study, geopolymer concrete mixtures were produced by replacing zeolite with blast furnace slag (BFS) at the amount of 5%, 10% and 15% (by weight). To evaluate the effect of different curing conditions geopolymer concrete specimens have gained strength with three different curing environments (25 ° C air, 25 ° C water and 60 ° C water curing). Compressive strength tests were carried out at the end of 3, 7 and 28 days on the geopolymer concrete samples. Abrasion loss and density tests were carried out at the end of the 28th-day of curing period. As a result, the change of compressive strength and abrasion loss of geopolymer concretes containing 5 %, 10 % and 15 % zeolite and the effect of different curing conditions were comparatively. In general, it was seen that compressive strength and abrasion losses of geopolymer concretes were affected by the curing conditions. The specimens cured in 60 °C water bath reached the highest compressive strength values about 88 MPa. The increase in the use of zeolite positively contributes to abrasion resistance in geopolymer concretes. It has been observed that hot water curing application (60 °C) has reduced the abrasion loss.

Kaynakça

  • [1] G. V. P. Bhagath Singh and K. V. L. Subramaniam, "Production and characterization of low-energy Portland composite cement from post-industrial waste," Journal of Cleaner Production, vol. 239, p. 118024, 2019/12/01/ 2019.
  • [2] J. Wang, Y. Dai, and L. Gao, "Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry," Applied Energy, vol. 86, no. 6, pp. 941-948, 2009/06/01/ 2009.
  • [3] W. Zhang, A. Maleki, M. G. Khajeh, Y. Zhang, S. M. Mortazavi, and A. Vasel-Be-Hagh, "A novel framework for integrated energy optimization of a cement plant: An industrial case study," Sustainable Energy Technologies and Assessments, vol. 35, pp. 245-256, 2019/10/01/ 2019.
  • [4] A. Nikolov, H. Nugteren, and I. Rostovsky, "Optimization of geopolymers based on natural zeolite clinoptilolite by calcination and use of aluminate activators," Construction and Building Materials, vol. 243, p. 118257, 2020/05/20/ 2020.
  • [5] B. C. McLellan, R. P. Williams, J. Lay, A. van Riessen, and G. D. Corder, "Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement," Journal of Cleaner Production, vol. 19, no. 9, pp. 1080-1090, 2011/06/01/ 2011.
  • [6] P. Rożek, M. Król, and W. Mozgawa, "Geopolymer-zeolite composites: A review," Journal of Cleaner Production, vol. 230, pp. 557-579, 2019/09/01/ 2019.
  • [7] A. Buchwald, H. D. Zellmann, and C. Kaps, "Condensation of aluminosilicate gels—model system for geopolymer binders," Journal of Non-Crystalline Solids, vol. 357, no. 5, pp. 1376-1382, 2011/03/01/ 2011.
  • [8] E. Papa et al., "Zeolite-geopolymer composite materials: Production and characterization," Journal of Cleaner Production, vol. 171, pp. 76-84, 2018/01/10/ 2018.
  • [9] S. Park and M. Pour-Ghaz, "What is the role of water in the geopolymerization of metakaolin?," Construction and Building Materials, vol. 182, pp. 360-370, 2018/09/10/ 2018.
  • [10] S. Mesgari, A. Akbarnezhad, and J. Z. Xiao, "Recycled geopolymer aggregates as coarse aggregates for Portland cement concrete and geopolymer concrete: Effects on mechanical properties," Construction and Building Materials, vol. 236, p. 117571, 2020/03/10/ 2020.
  • [11] N. A. Ulloa, H. Baykara, M. H. Cornejo, A. Rigail, C. Paredes, and J. L. Villalba, "Application-oriented mix design optimization and characterization of zeolite-based geopolymer mortars," Construction and Building Materials, vol. 174, pp. 138-149, 2018/06/20/ 2018.
  • [12] A. Sudagar et al., "A novel study on the influence of cork waste residue on metakaolin-zeolite based geopolymers," Applied Clay Science, vol. 152, pp. 196-210, 2018/02/01/ 2018.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ümit Yurt 0000-0001-6009-6786

Mehmet Emiroğlu 0000-0002-0214-4986

Yayımlanma Tarihi 26 Mayıs 2020
Gönderilme Tarihi 12 Şubat 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 8 Sayı: 2

Kaynak Göster

IEEE Ü. Yurt ve M. Emiroğlu, “Zeolit İkameli Geopolimer Betonlarda Kür Şartlarının Etkileri”, APJES, c. 8, sy. 2, ss. 396–402, 2020, doi: 10.21541/apjes.688186.

Cited By