Research Article
BibTex RIS Cite

Dinamik Simülasyonlarda Ağ Örgüsü Geometrik Şeklinin Basınç Davranışına Etkisinin Araştırılması

Year 2020, Volume: 8 Issue: 3, 555 - 564, 30.09.2020
https://doi.org/10.21541/apjes.688513

Abstract

Bu makalede, LS-DYNA sonlu elemanlar çözücüsü kullanılarak gerçekleştirilen dinamik simülasyonlarda, ağ örgüsü geometrik şeklinin, basıncın havadaki ilerleyişine ve büyüklüğüne etkisi incelenmiştir. İncelenen geometrik şekiller kübik, silindirik ve küresel olarak seçilmiştir. Dinamik simülasyonu modellemek için ALE metodu kullanılmıştır. Hedef bir noktadaki pik basınç değerleri, test sahasındaki dinamik testten elde edilen değer ile kıyaslanmıştır. Son olarak çalışmada belirtilen koşullarda hangi ağ örgüsü geometrik şeklinin daha doğru sonuçlar verebileceği değerlendirilmiştir.

References

  • [1] Hallquist, J., LS-DYNA keyword user’s manual – Version 970, Livermore Software Technology Corporation, Livermore, 2012.
  • [2] G. F. Kinney and K. J. Graham, “Explosive Shocks in Air,” 1985.
  • [3] J.O. Hallquist, LS-DYNA Theory Manual, Livermore Software Technology Corporation, California, USA, 2006.
  • [4] B. Dobratz, “Properties of chemical explosives and explosive simulants,” 1972.
  • [5] A. Erdik, S. A. Kilic, N. Kilic, and S. Bedir, “Erratum to: Numerical simulation of armored vehicles subjected to undercarriage landmine blasts,” Shock Waves, vol. 26, no. 4, pp. 531–531, 2016.
  • [6] Z. S. Tabatabaei, J. S. Volz, J. Baird, B. P. Gliha, and D. I. Keener, “Experimental and numerical analyses of long carbon fiber reinforced concrete panels exposed to blast loading,” International Journal of Impact Engineering, vol. 57, pp. 70–80, 2013.
  • [7] W. Xiao, M. Andrae, L. Ruediger, and N. Gebbeken, “Numerical prediction of blast wall effectiveness for structural protection against air blast,” Procedia Engineering, vol. 199, pp. 2519–2524, 2017.
  • [8] A. Alia and M. Souli, “High explosive simulation using multi-material formulations,” Applied Thermal Engineering, vol. 26, no. 10, pp. 1032–1042, 2006.
  • [9] M. S. Chafi, G. Karami, and M. Ziejewski, “Numerical analysis of blast-induced wave propagation using FSI and ALE multi-material formulations,” International Journal of Impact Engineering, vol. 36, no. 10-11, pp. 1269–1275, 2009.
  • [10] G. F. Kinney and K. J. Graham, Explosive Shocks in Air. Berlin: Springer Berlin, 2014.
  • [11] P. S. Bulson, “A history of research and a review of recent developments,” Explosive Loading of Engineering Structures, 1997.
  • [12] T. Belytschko, D. Flanagan, and J. Kennedy, “Finite element methods with user-controlled meshes for fluid-structure interaction,” Computer Methods in Applied Mechanics and Engineering, vol. 33, no. 1-3, pp. 669–688, 1982.
  • [13] W. Noh, “Cel: A Time-Dependent, Two-Space-Dimensional, Coupled Eulerian-Lagrange Code,” 1963.
  • [14] N. Aquelet, M. Souli, J. Gabrys, and L. Olovson, “A new ALE formualtion for sloshing analysis,” Structural Engineering and Mechanics, vol. 16, no. 4, pp. 423–440, 2003.
  • [15] P. Woodward and P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks,” Journal of Computational Physics, vol. 54, no. 1, pp. 115–173, 1984.
Year 2020, Volume: 8 Issue: 3, 555 - 564, 30.09.2020
https://doi.org/10.21541/apjes.688513

Abstract

References

  • [1] Hallquist, J., LS-DYNA keyword user’s manual – Version 970, Livermore Software Technology Corporation, Livermore, 2012.
  • [2] G. F. Kinney and K. J. Graham, “Explosive Shocks in Air,” 1985.
  • [3] J.O. Hallquist, LS-DYNA Theory Manual, Livermore Software Technology Corporation, California, USA, 2006.
  • [4] B. Dobratz, “Properties of chemical explosives and explosive simulants,” 1972.
  • [5] A. Erdik, S. A. Kilic, N. Kilic, and S. Bedir, “Erratum to: Numerical simulation of armored vehicles subjected to undercarriage landmine blasts,” Shock Waves, vol. 26, no. 4, pp. 531–531, 2016.
  • [6] Z. S. Tabatabaei, J. S. Volz, J. Baird, B. P. Gliha, and D. I. Keener, “Experimental and numerical analyses of long carbon fiber reinforced concrete panels exposed to blast loading,” International Journal of Impact Engineering, vol. 57, pp. 70–80, 2013.
  • [7] W. Xiao, M. Andrae, L. Ruediger, and N. Gebbeken, “Numerical prediction of blast wall effectiveness for structural protection against air blast,” Procedia Engineering, vol. 199, pp. 2519–2524, 2017.
  • [8] A. Alia and M. Souli, “High explosive simulation using multi-material formulations,” Applied Thermal Engineering, vol. 26, no. 10, pp. 1032–1042, 2006.
  • [9] M. S. Chafi, G. Karami, and M. Ziejewski, “Numerical analysis of blast-induced wave propagation using FSI and ALE multi-material formulations,” International Journal of Impact Engineering, vol. 36, no. 10-11, pp. 1269–1275, 2009.
  • [10] G. F. Kinney and K. J. Graham, Explosive Shocks in Air. Berlin: Springer Berlin, 2014.
  • [11] P. S. Bulson, “A history of research and a review of recent developments,” Explosive Loading of Engineering Structures, 1997.
  • [12] T. Belytschko, D. Flanagan, and J. Kennedy, “Finite element methods with user-controlled meshes for fluid-structure interaction,” Computer Methods in Applied Mechanics and Engineering, vol. 33, no. 1-3, pp. 669–688, 1982.
  • [13] W. Noh, “Cel: A Time-Dependent, Two-Space-Dimensional, Coupled Eulerian-Lagrange Code,” 1963.
  • [14] N. Aquelet, M. Souli, J. Gabrys, and L. Olovson, “A new ALE formualtion for sloshing analysis,” Structural Engineering and Mechanics, vol. 16, no. 4, pp. 423–440, 2003.
  • [15] P. Woodward and P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks,” Journal of Computational Physics, vol. 54, no. 1, pp. 115–173, 1984.
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Hasan Hacıosmanoğlu 0000-0002-5441-0537

Gökhan Sevilgen 0000-0002-7746-2014

Emre İsa Albak 0000-0001-9215-0775

Publication Date September 30, 2020
Submission Date February 12, 2020
Published in Issue Year 2020 Volume: 8 Issue: 3

Cite

IEEE H. Hacıosmanoğlu, G. Sevilgen, and E. İ. Albak, “Dinamik Simülasyonlarda Ağ Örgüsü Geometrik Şeklinin Basınç Davranışına Etkisinin Araştırılması”, APJES, vol. 8, no. 3, pp. 555–564, 2020, doi: 10.21541/apjes.688513.