Research Article
BibTex RIS Cite

Ortoper Bulanık Kümelerle Bir Karar Verme Yaklaşımı: Ortoper Bulanık TOPSIS Metodu

Year 2021, Volume: 9 Issue: 1, 214 - 222, 29.01.2021
https://doi.org/10.21541/apjes.619339

Abstract

Tıbbi karar verme, son yıllarda mühendisler için önemli bir araştırma alanı haline gelmiştir. Doktorlar daha çok istatistiksel araçlar kullandıklarından, tıbbi kararlarda çok kriterli karar verme modeli kurmak oldukça zordur. Bu noktada bulanık karar destek sistemleri, doktorlara görüşlerini sözel terimlerle ifade etme fırsatı sunar. Ortoper bulanık setlerin kullanılması ise karar vericilerin yani doktorların, tereddütlerini ifade etmeleri konusunda bulanık setler arasında en yüksek esnekliği sağlar. Bu çalışmada akut atak şikayeti ile hastaneye başvuran KOAH hastalarının hastane yatış sürelerinin sıralanması için Ortoper Bulanık TOPSIS (OFTOPSIS) metodu önerilmiştir. Bu yöntem doktorların tereddütlerini sözel terimlerle ifade etmede en yüksek esnekliği sağlarken, hastaların durumunu önceden doktorlar tarafından belirlenmiş kriterlere göre değerlendirir. Çalışmanın literature katkısı ilk kez OFTOPSIS metodunu geliştirmek ve tıbbi bir problemde uygulamasını yaparak faydasını göstermektir. Gerçek sıralama ve metot tarafından bulunan sıralama, pozitif bir ilişki varlığını gözlemlemek için Spearman korelasyon katsayısı kullanılarak karşılaştırılmıştır.

Supporting Institution

Galatasaray Üniversitesi

Project Number

19.402.009

References

  • [1] L. Zadeh, Fuzzy Sets, Information and Control, 8 (1965) 338-353.
  • [2] K.T. Atanassov, Intuitionistic Fuzzy-Sets, Fuzzy Sets and Systems, 20 (1986) 87-96.
  • [3] R.R. Yager, A.M. Abbasov, Pythagorean membership grades, complex numbers, and decision making, International Journal of Intelligent Systems, 28 (2013) 436-452.
  • [4] K. Atanassov, P. Vassilev, R. Tcvetkov, Intuitionistic fuzzy sets, measures and integrals, Prof. M. Drinov” Academic Publishing House, Sofia, (2013).
  • [5] R.R. Yager, Generalized orthopair fuzzy sets, IEEE Transactions on Fuzzy Systems, 25 (2017) 1222-1230.
  • [6] R.R. Yager, N. Alajlan, Approximate reasoning with generalized orthopair fuzzy sets, Information Fusion, 38 (2017) 65-73.
  • [7] B.P. Joshi, A. Singh, P.K. Bhatt, et al., Interval valued q-rung orthopair fuzzy sets and their properties, Journal of Intelligent & Fuzzy Systems, 35 (2018) 5225-5230.
  • [8] X.D. Peng, J.G. Dai, H. Garg, Exponential operation and aggregation operator for q-rung orthopair fuzzy set and their decision-making method with a new score function, International Journal of Intelligent Systems, 33 (2018) 2255-2282.
  • [9] R.R. Yager, N. Alajlan, Y. Bazi, Aspects of generalized orthopair fuzzy sets, International Journal of Intelligent Systems, 33 (2018) 2154-2174.
  • [10] A. Habib, M. Akram, A. Farooq, q-Rung Orthopair Fuzzy Competition Graphs with Application in the Soil Ecosystem, Mathematics, 7 (2019).
  • [11] W.S. Du, Correlation and correlation coefficient of generalized orthopair fuzzy sets, International Journal of Intelligent Systems, 34 (2019) 564-583.
  • [12] L. Li, R.T. Zhang, J. Wang, et al., Some q-rung orthopair linguistic Heronian mean operators with their application to multi-attribute group decision making, Archives of Control Sciences, 28 (2018) 551-583.
  • [13] G.W. Wei, H. Gao, Y. Wei, Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making, International Journal of Intelligent Systems, 33 (2018) 1426-1458.[14] P.D. Liu, S.M. Chen, P. Wang, et al., The q-Rung Orthopair Fuzzy Power Maclaurin Symmetric Mean Operators, 2018.
  • [15] K.Y. Bai, X.M. Zhu, J. Wang, et al., Some Partitioned Maclaurin Symmetric Mean Based on q-Rung Orthopair Fuzzy Information for Dealing with Multi-Attribute Group Decision Making, Symmetry-Basel, 10 (2018).
  • [16] P.D. Liu, J.L. Liu, Some q-Rung Orthopai Fuzzy Bonferroni Mean Operators and Their Application to Multi-Attribute Group Decision Making, International Journal of Intelligent Systems, 33 (2018) 315-347.
  • [17] Y.H. Huang, G.W. Wei, TODIM method for interval-valued Pythagorean fuzzy multiple attribute decision making, International Journal of Knowledge-Based and Intelligent Engineering Systems, 22 (2018) 249-259.
  • [18] W.S. Du, Minkowski-type distance measures for generalized orthopair fuzzy sets, International Journal of Intelligent Systems, 33 (2018) 802-817.
  • [19] L. Li, R.T. Zhang, J. Wang, et al., A Novel Approach to Multi-Attribute Group Decision-Making with q-Rung Picture Linguistic Information, Symmetry-Basel, 10 (2018).
  • [20] J. Wang, H. Gao, G.W. Wei, et al., Methods for Multiple-Attribute Group Decision Making with q-Rung Interval-Valued Orthopair Fuzzy Information and Their Applications to the Selection of Green Suppliers, Symmetry-Basel, 11 (2019).
  • [21] G.W. Wei, C. Wei, J. Wang, et al., Some q-rung orthopair fuzzy maclaurin symmetric mean operators and their applications to potential evaluation of emerging technology commercialization, International Journal of Intelligent Systems, 34 (2019) 50-81.
  • [22] W. Yang, Y.F. Pang, New q-rung orthopair fuzzy partitioned Bonferroni mean operators and their application in multiple attribute decision making, International Journal of Intelligent Systems, 34 (2019) 439-476.
  • [23] C.L. Hwang, K. Yoon, Multiple attribute decision making : methods and applications : a state-of-the-art survey, Springer-Verlag, Berlin ; New York, 1981.
  • [24] P. Liu, P. Wang, Some q‐rung orthopair fuzzy aggregation operators and their applications to multiple‐attribute decision making, International Journal of Intelligent Systems, 33 (2018) 259-280.
  • [25] D.F. Li, Extension of the LINMAP for multiattribute decision making under Atanassov's intuitionistic fuzzy environment, Fuzzy Optimization and Decision Making, 7 (2008) 17-34.
  • [26] M.E. Charlson, P. Pompei, K.L. Ales, et al., A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation, Journal of Chronic Diseases, 40 (1987) 373-383.

A Decision-Making Approach with Q-Rung Orthopair Fuzzy Sets: Orthopair Fuzzy TOPSIS Method

Year 2021, Volume: 9 Issue: 1, 214 - 222, 29.01.2021
https://doi.org/10.21541/apjes.619339

Abstract

Medical decision-making has recently become a crucial research area due to its outputs related to the continuity of human life. Since the physicians used to employ statistical tools for a number of years, constructing a multi-attribute decision framework is quite difficult. In general, fuzzy decision aid systems provide flexibility to the physicians enabling them to express their opinions using linguistic variables. Moreover, orthopair fuzzy numbers allows the decision makers to represent their hesitations while providing linguistic data in both uncertain and hesitant environment. This paper proposes orthopair fuzzy TOPSIS (OFTOPSIS) methodology in order to rank the length of hospital stay of chronic obstructive pulmonary disease patients, who admitted to a chest diseases hospital with an acute exacerbation. The proposed method provides maximum flexibility to the physicians for expressing their hesitations to the system modelers, while assessing patients’ status according to pre-determined attributes. The novelty of this paper is to develop OFTOPSIS methodology, and conduct a case study in medical area to demonstrate the robustness of the proposed decision-making framework. The actual ranking and the ranking determined by OFTOPSIS method are compared by Spearman rank correlation coefficient to conclude whether there is a positive relationship between the ranking results.

Project Number

19.402.009

References

  • [1] L. Zadeh, Fuzzy Sets, Information and Control, 8 (1965) 338-353.
  • [2] K.T. Atanassov, Intuitionistic Fuzzy-Sets, Fuzzy Sets and Systems, 20 (1986) 87-96.
  • [3] R.R. Yager, A.M. Abbasov, Pythagorean membership grades, complex numbers, and decision making, International Journal of Intelligent Systems, 28 (2013) 436-452.
  • [4] K. Atanassov, P. Vassilev, R. Tcvetkov, Intuitionistic fuzzy sets, measures and integrals, Prof. M. Drinov” Academic Publishing House, Sofia, (2013).
  • [5] R.R. Yager, Generalized orthopair fuzzy sets, IEEE Transactions on Fuzzy Systems, 25 (2017) 1222-1230.
  • [6] R.R. Yager, N. Alajlan, Approximate reasoning with generalized orthopair fuzzy sets, Information Fusion, 38 (2017) 65-73.
  • [7] B.P. Joshi, A. Singh, P.K. Bhatt, et al., Interval valued q-rung orthopair fuzzy sets and their properties, Journal of Intelligent & Fuzzy Systems, 35 (2018) 5225-5230.
  • [8] X.D. Peng, J.G. Dai, H. Garg, Exponential operation and aggregation operator for q-rung orthopair fuzzy set and their decision-making method with a new score function, International Journal of Intelligent Systems, 33 (2018) 2255-2282.
  • [9] R.R. Yager, N. Alajlan, Y. Bazi, Aspects of generalized orthopair fuzzy sets, International Journal of Intelligent Systems, 33 (2018) 2154-2174.
  • [10] A. Habib, M. Akram, A. Farooq, q-Rung Orthopair Fuzzy Competition Graphs with Application in the Soil Ecosystem, Mathematics, 7 (2019).
  • [11] W.S. Du, Correlation and correlation coefficient of generalized orthopair fuzzy sets, International Journal of Intelligent Systems, 34 (2019) 564-583.
  • [12] L. Li, R.T. Zhang, J. Wang, et al., Some q-rung orthopair linguistic Heronian mean operators with their application to multi-attribute group decision making, Archives of Control Sciences, 28 (2018) 551-583.
  • [13] G.W. Wei, H. Gao, Y. Wei, Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making, International Journal of Intelligent Systems, 33 (2018) 1426-1458.[14] P.D. Liu, S.M. Chen, P. Wang, et al., The q-Rung Orthopair Fuzzy Power Maclaurin Symmetric Mean Operators, 2018.
  • [15] K.Y. Bai, X.M. Zhu, J. Wang, et al., Some Partitioned Maclaurin Symmetric Mean Based on q-Rung Orthopair Fuzzy Information for Dealing with Multi-Attribute Group Decision Making, Symmetry-Basel, 10 (2018).
  • [16] P.D. Liu, J.L. Liu, Some q-Rung Orthopai Fuzzy Bonferroni Mean Operators and Their Application to Multi-Attribute Group Decision Making, International Journal of Intelligent Systems, 33 (2018) 315-347.
  • [17] Y.H. Huang, G.W. Wei, TODIM method for interval-valued Pythagorean fuzzy multiple attribute decision making, International Journal of Knowledge-Based and Intelligent Engineering Systems, 22 (2018) 249-259.
  • [18] W.S. Du, Minkowski-type distance measures for generalized orthopair fuzzy sets, International Journal of Intelligent Systems, 33 (2018) 802-817.
  • [19] L. Li, R.T. Zhang, J. Wang, et al., A Novel Approach to Multi-Attribute Group Decision-Making with q-Rung Picture Linguistic Information, Symmetry-Basel, 10 (2018).
  • [20] J. Wang, H. Gao, G.W. Wei, et al., Methods for Multiple-Attribute Group Decision Making with q-Rung Interval-Valued Orthopair Fuzzy Information and Their Applications to the Selection of Green Suppliers, Symmetry-Basel, 11 (2019).
  • [21] G.W. Wei, C. Wei, J. Wang, et al., Some q-rung orthopair fuzzy maclaurin symmetric mean operators and their applications to potential evaluation of emerging technology commercialization, International Journal of Intelligent Systems, 34 (2019) 50-81.
  • [22] W. Yang, Y.F. Pang, New q-rung orthopair fuzzy partitioned Bonferroni mean operators and their application in multiple attribute decision making, International Journal of Intelligent Systems, 34 (2019) 439-476.
  • [23] C.L. Hwang, K. Yoon, Multiple attribute decision making : methods and applications : a state-of-the-art survey, Springer-Verlag, Berlin ; New York, 1981.
  • [24] P. Liu, P. Wang, Some q‐rung orthopair fuzzy aggregation operators and their applications to multiple‐attribute decision making, International Journal of Intelligent Systems, 33 (2018) 259-280.
  • [25] D.F. Li, Extension of the LINMAP for multiattribute decision making under Atanassov's intuitionistic fuzzy environment, Fuzzy Optimization and Decision Making, 7 (2008) 17-34.
  • [26] M.E. Charlson, P. Pompei, K.L. Ales, et al., A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation, Journal of Chronic Diseases, 40 (1987) 373-383.
There are 25 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Elif Doğu 0000-0003-4883-3450

Project Number 19.402.009
Publication Date January 29, 2021
Submission Date September 12, 2019
Published in Issue Year 2021 Volume: 9 Issue: 1

Cite

IEEE E. Doğu, “A Decision-Making Approach with Q-Rung Orthopair Fuzzy Sets: Orthopair Fuzzy TOPSIS Method”, APJES, vol. 9, no. 1, pp. 214–222, 2021, doi: 10.21541/apjes.619339.