Yıl 2021, Cilt 9 , Sayı 1, Sayfalar 28 - 38 2021-01-29

EPS İle İkame Edilmiş Uçucu Küllü Geopolimer Hafif Harcın Fiziksel, Mekanik ve Isıl Geçirimlilik Özelliklerinin İncelenmesi

Serhan İLKENTAPAR [1] , Halil EREN [2]


Bu çalışmada genleştirilmiş polistiren (EPS) kullanılarak uçucu kül tabanlı geopolimer hafif harçlar imal edilmiştir. EPS hacimce %20, %40, %60, %80, %100 oranlarında ırmak kumu ile yer değiştirerek, EPS agregalı geopolimer harçların üretimi gerçekleştirilmiştir. EPS’li geopolimer harçlar, F sınıfı uçucu külün sabit oranda NaOH ile aktive edilmesiyle, 75 °C’de 24 ve 48 saat sıcaklık kürüne tabii tutulmuştur. Sıcaklık kürü sonrası geopolimer hafif harç numunelerin fiziksel özellikleri, mekanik özellikleri ve ısıl geçirimlilik özellikleri araştırılmıştır. Ayrıca 300 °C, 600 °C, 900 °C’de yüksek sıcaklık sonrası geopolimer harçların eğilme, basınç dayanımları ve geopolimer hamurların mikro yapısı incelenmiştir. Elde edilen sonuçlara göre 24 saat sıcaklık kürüne tabii tutulan hafif geopolimer harçların birim ağırlıkları 1,93 ile 0,61 g/cm3 arasında, 48 saat sıcaklık kürüne tabii tutulan hafif geopolimer harçların birim ağırlıkları 1,87 ile 0,66 g/cm3 arasında olduğu görülmüştür. Yüksek sıcaklık sonrası %20 ve %40 EPS ikameli (EUK 20, EUK40) geopolimer harçların basınç dayanımındaki kayıp oranları, referans geopolimer numuneye göre daha az olduğu belirlenmiştir. FESEM görüntülerinde yüksek sıcaklık sonrası dayanım kaybına yol açan gözenekli yapı ve mevcut dayanımı devam ettiren NASH jeli yapısı görüntülenmiştir. Birim ağırlık ile basınç dayanımı (R2=0,9008), ısı geçirgenlik katsayısı (R2=0,9787), ultrasonik geçiş hızı (R2=0,9082), ve yarmada çekme dayanımı (R2=0,9191) arasında yüksek oranda doğrusal ilişki olduğu sonucuna ulaşılmıştır.
In this study, fly ash-based geopolymer light mortars were produced using expanded polystyrene (EPS). EPS aggregated geopolymer mortars were produced by replacing the river sand with 20%, 40%, 60%, 80%, 100% by volume. Geopolymer mortars with EPS were subjected to a temperature heat curing at 75 ° C for 24 and 48 hours by activating the F class fly ash with NaOH at a fixed rate. Physical properties, mechanical properties, and thermal conductivity properties of geopolymer lightweight mortar samples after heat curing were investigated. In addition, the flexural, compressive strength of geopolymer mortars after high temperatures at 300 ° C, 600 ° C, 900 ° C, and the microstructure of geopolymer pastes were investigated. According to the results, the unit weights of light geopolymer mortars subjected to 24 hours of heat curing are between 1.93 and 0.61 g/cm3, and the unit weights of light geopolymer mortars subjected to 48 hours of heat curing are between 1.87 and 0.66 g/cm3 has been seen. The compressive strength loss of geopolymer mortars with 20% and 40% EPS replacement (EUK 20, EUK40) after the high temperature was determined to be less than the reference geopolymer sample. The porous structure that causes loss of strength after high temperature and NASH gel structure that maintains the existing strength are displayed in FESEM images. Highly linear between unit weight and compressive strength (R2 = 0.9191), heat transmission coefficient (R2 = 0.9787), ultrasonic transmission velocity (R2 = 0.9082), and split tensile strength (R2 = 0.9191) It has been concluded that there is a relationship.
  • V.M. Malhotra, Introduction: sustainable development and concrete technology, ACI Concr. Int. 24 (7) (2002).
  • X. Guo, H. Shi, W.A. Dick, Compressive strength and microstructural characteristics of class C fly ash geopolymer, Cem. Concr. Compos. 32, 142–147, 2010
  • M.J.A. Mijarsh, M.A. Johari, Z.A. Ahmad, Synthesis of geopolymer from large amounts of treated palm oil fuel ash: application of the Taguchi method in investigating the main parameters affecting compressive strength, Constr. Build. Mater. 52, 473–481, 2014
  • S. Hanjitsuwan, S. Hunpratub, P. Thongbai, S. Maensiri, V. Sata, P. Chindaprasirt, Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste, Cem. Concr. Compos. 45, 9–14, 2014
  • T. Phoongernkham, P. Chindaprasirt, V. Sata, S. Hanjitsuwan, S. Hatanaka, The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature, Mater. Des. 55 58–65, 2014
  • J. He, Y. Jie, J. Zhang, Y. Yu, G. Zhang, Synthesis and characterization of red mud and rice husk ash-based geopolymer composites, Cem. Concr. Compos. 37, 2013
  • J. Davidovits, Geopolymer Chemistry and Applications, third ed., Geopolymer Institute, Saint-Quentin, France, Juli, 2011.
  • J.L. Provis, S.A. Bernal, Geopolymers and related alkali-activated materials, Annu. Rev. Mater. Res. 44 299–327, 2014
  • Ü.Yurt And M. Emiroğlu, “Zeolit İkameli Geopolimer Betonlarda Kür Şartlarının Etkileri,” Acad. Platf. J. Eng. Sci., pp. 396–402, 2020.
  • G. Görhan, “Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Geopolimer Harç Özelliklerine Metakaolin Kalsinasyon Sıcaklığının Etkisi Effect of Calcination Temperature of Metakaolin on the Properties of Geopolymer Mortar,” vol. 20, pp. 83–89, 2020.
  • M. M. Yadollahi and S. Varolgüneş, “Polipropilen Liflerin Perlit Esaslı Geopolimerlerin Mekanik Davranışına Etkisi The Effect of Polypropylene Fibers on Mechanical Behavior of Perlite Based Geopolymers,” vol. 7, no. 2, pp. 36–41, 2018.
  • S. Güzelküçük, “Perlit Esaslı Geopolimer KompozitlereKür Süresi ve Sıcaklığın Etkisi Effect Of Curing Time and Temperature on Perlite-Based Geopolimer Composites,” pp. 5–12, 2019.
  • .M. Serhat Başpınar et al., “Aralık (5-10 s) AKU,” J.Eng.App.Sci, vol. 1, no. 5, 2018.
  • Panias D, Giannopoulou IP, Perraki T. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids Surf A;301:246–54. 2007
  • Chindaprasirt P, Chareerat T, Sirivivananon V. Workability and strength of coarse high calcium fly ash geopolymer. Cem Concr Compos;29: 224–9(2007)
  • .C. D. Atiş, E. B. Görür, O. Karahan, C. Bilim, S. İlkentapar, and E. Luga, “Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration,” Constr. Build. Mater., vol. 96, pp. 673–678, Oct. 2015.
  • TS EN 206-1, Beton – Bölüm 1: Özellik, Performans, İmalat ve Uygunluk, Türk Standartları Enstitüsü, Ankara 2002.
  • Taşdemir C., Şengül Ö., “Hafif Betonların Fiziksel ve Mekanik Özellikleri”, Beton 2013 Hazır Beton Kongresi, İstanbul, 21-23 Şubat 2013.
  • P. Posi, C. Teerachanwit, C. Tanutong, S. Limkamoltip, S. Lertnimoolchai, V. Sata, P. Chindaprasirt, Lightweight geopolymer concrete containing aggregate from recycle lightweight block, Mater. Des. 52 580–586, 2013
  • .D.M.A. Huiskes, A. Keulen, Q.L. Yu, H.J.H. Brouwers, Design and performance evaluation of ultra-lightweight geopolymer concrete, Mater. Des. 89 516–526, 2016
  • M. Aslam, P. Shafigh, M.A. Nomeli, M.Z. Jumaat, Manufacturing of high- strength lightweight aggregate concrete using blended coarse lightweight aggregates, J. Clean. Prod. 13, 2017
  • .H.A. Mboya, K.N. Njau, A.L. Mrema, C.K. King’ondu, Influence of scoria and pumice on key performance indicators of Portland cement concrete, Constr. Build. Mater. 197, 2019
  • A.M. Rashad, Vermiculite as a construction material e a short guide for Civil Engineer, Constr. Build. Mater. 125, 2016
  • TS 3530 EN 933-1, Agregaların geometrik özellikleri için deneyler bölüm 1: Tane büyüklüğü dağılımı tayini- Eleme metodu, Türk Standartları Enstitüsü, 1999.
  • TS EN 1015-3,. Kagir harcı- Deney metotları- Bölüm 3: Taze harç kıvamının tayini (yayılma tablası ile), Türk Standartları Enstitüsü, Ankara 2000
  • TS EN 1015-11 Kagir harcı - Deney metotları -Bölüm 11: Sertleşmiş harcın basınç ve eğilme dayanımının tayini, Türk Standartları Enstitüsü, Ankara. 2000
  • TS 2824 EN 1338/AC Zemin Döşemesi İçin Beton Kaplama Blokları - Gerekli Şartlar Ve Deney Metotları, Türk Standartları Enstitüsü, Ankara, 2009
  • ASTM C1585-13. Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes, Annual Book of ASTM Standarts, February, 2013
  • TS EN 12504-4,. Testing concrete - Part 4: Determination of ultrasonic pulse velocity. Ankara: TSE, 2012
  • D. Hardjito, S.E. Wallah, D.M.J. Sumajouw, B.V. Rangan, Factors infuencing the compressive strength of fly ash-based geopolymer concrete, Civ. Eng. Dimens. 6 September,(2004)
  • E.G. Nawy, Concrete Construction Engineering Handbook, CRC Press, Taylor & Francis Group, Boca Raton, (24 June). 2008
  • D. Hardjito, B.V. Rangan, Development and Properties ofLow-Calcium Fly Ash Based Geopolymer Concrete, Research Report GC1(Perth) 2005.
  • V.F.F. Barbosa, K.J.D. MacKenzie, C. Thaumaturgo, Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers, Int. J. Inorg. Mater. 2 309–317. (2000)
  • .S. İlkentapar, C. D. Atiş, O. Karahan, and E. B. Görür Avşaroğlu, “Influence of duration of heat curing and extra rest period after heat curing on the strength and transport characteristic of alkali activated class F fly ash geopolymer mortar,” Constr. Build. Mater., vol. 151, pp. 363–369, 2017.
  • M. Kaya, M. Uysal, K. Yilmaz, and C. D. Atis, “Behaviour of Geopolymer Mortars after Exposure to Elevated Temperatures,” vol. 24, no. 4, 2018.
  • .A. Hosan, S. Haque, and F. Shaikh, “Compressive behaviour of sodium and potassium activators synthetized fly ash geopolymer at elevated temperatures_ A comparative study,” J. Build. Eng., vol. 8, no. October, pp. 123–130, 2016.
  • M. Lahoti, K. K. Wong, K. H. Tan, and E. H. Yang, “Effect of alkali cation type on strength endurance of fly ash geopolymers subject to high temperature exposure,” Mater. Des., vol. 154, pp. 8–19, Sep. 2018.
  • T. Bakharev, “Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing,” Cem. Concr. Res., vol. 36, no. 6, pp. 1134–1147, Jun. 2006.
  • D. M. A. Huiskes, A. Keulen, Q. L. Yu, and H. J. H. Brouwers, “Design and performance evaluation of ultra-lightweight geopolymer concrete,” Mater. Des., vol. 89, pp. 516–526, Jan. 2016.
  • C. Shi, P.V. Krivenko, D. Roy, Alkali-Activated Cements and Concretes, Taylor & Frencis, Oxon, UK, 2006.
  • R. Aguilar, O. Burciaga Díaz, J.I. Escalante García, Lightweight concretes of activated metakaolin–Fy ash binders, with blast furnace slag aggregates, Constr. Build. Mater. 24 (16 December). (2010)
  • Y. Zhao, J. Ye, X. Lu, M. Liu, Y. Lin,W. Gong, G. Ning, Preparation ofsintered foamma- terials by alkali-activated coal fly ash, J. Hazard. Mater. 174 (6 Septbemer). (2009)
  • S. Chandrasekhar and P. N. Pramada, “Sintering behaviour of calcium exchanged low silica zeolites synthesized from kaolin,” vol. 27, pp. 105–114, 2001.
Birincil Dil tr
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Orcid: 0000-0002-9932-2899
Yazar: Serhan İLKENTAPAR (Sorumlu Yazar)
Kurum: Erciyes Üniversitesi Mühendislik Fakültesi
Ülke: Turkey


Orcid: 0000-0001-6071-6009
Yazar: Halil EREN
Kurum: ERCİYES ÜNİVERSİTESİ
Ülke: Turkey


Destekleyen Kurum Türkiye Bilimsel ve Teknolojik Araştırma Kurum (TÜBİTAK)
Proje Numarası 2241
Teşekkür Bu proje Türkiye Bilimsel ve Teknolojik Araştırma Kurum (TÜBİTAK) 2209 B Sanayiye yönelik lisans araştırma projeleri 2241 nolu proje kapsamında desteklenmiştir.
Tarihler

Başvuru Tarihi : 2 Nisan 2020
Kabul Tarihi : 12 Eylül 2020
Yayımlanma Tarihi : 29 Ocak 2021

IEEE S. İlkentapar ve H. Eren , "EPS İle İkame Edilmiş Uçucu Küllü Geopolimer Hafif Harcın Fiziksel, Mekanik ve Isıl Geçirimlilik Özelliklerinin İncelenmesi", Academic Platform Journal of Engineering and Science, c. 9, sayı. 1, ss. 28-38, Oca. 2021, doi:10.21541/apjes.713547