Research Article
BibTex RIS Cite

Nükleer Kabuk Modeli ile Ne İzotoplarının Nükleer Yapısının İncelenmesi

Year 2021, Volume: 9 Issue: 2, 296 - 301, 28.05.2021
https://doi.org/10.21541/apjes.718960

Abstract

Atom çekirdeklerinin nükleer yapılarını araştırma amacıyla kullanılan yaygın yöntemlerden birisi de nükleer kabuk modelidir. Atom elektronlarının yörüngelere yerleşmesine benzer şekilde, nükleer kabuk modelinde de proton ve nötronların, Pauli dışarlama ilkesine uyarak çekirdek içerisinde yörüngelere yerleştiği düşünülmektedir. Bu yörüngeler, kendi aralarında gruplanarak kabukları meydana getirmektedir ki, bir kabuktaki tüm mümkün seviyelerin dolu olması durumunda, kabuğun kapalı olduğu söylenir. Kapalı kabuğa sahip atom çekirdekleri oldukça kararlıdırlar ve nükleer kabuk modeli hesaplamalarında bu çekirdeklerden fazla olan değerlik nükleonları hesaplamalara katılır. Bu çalışmada, 16O çekirdeği kapalı kabuk çekirdeği olarak ele alınarak, çift-çift Ne çekirdeklerinin nükleer yapılarını araştırmak için nükleer kabuk modeli kullanılmıştır. Tek parçacık yörüngeleri olarak d5/2, s1/2 ve d3/2 ele alınarak, değerlik nükleonları arasındaki iki cisim etkileşmeleri için farklı parametre setleri kullanılmıştır. Sonuçlar birbirleriyle ve mevcut literatür değerleriyle karşılaştırılmıştır. Deneysel değerlere en yakın sonuçların, usdb ve sdnn parametre setleri ile elde edildiği görülmüştür. Sihirli nötron sayılı 18Ne izotopunda, ilk uyarılmış seviye enerjisinin beklendiği gibi fazla olduğu görülmüştür. Ardından 20Ne ve 22Ne çekirdekleri için bu uyarılma enerjisi düşmekte ve sonra yörüngelerin tam dolu hale gelmesi ile tekrar yükselmektedir.

References

  • [1] A. Bohr A., B.R. Mottelson, Nuclear Structure Vol. 1. New York: W.A. Benjamin, 1969.
  • [2] I. Talmi, I, “55 years of the shell model: a challenge to nuclear many-body theory”, Int. J. Mod. Phys. E, 14, 821-844, (2005).
  • [3] E. Caurier, etal., “The shell model as a unified view of nuclear structure”, Rev. Mod. Phy., 77, 427-488, (2005).
  • [4] B.A. Brown, “The Nuclear Shell Model Towards the Drip Lines”, Prog. Part. Nucl. Phys., 47, 517-599, (2001).
  • [5] K.L.G, Heyde, The Nuclear Shell Model, Berlin Heidelberg: Springer-Verlag, 1990.
  • [6] M.G. Mayer, “On Closed Shells in Nuclei”, Phys. Rev., 74, 235-236, (1948).
  • [7] M.G. Mayer, “On Closed Shells in Nuclei. II”, Phys. Rev., 75, 1969-1970, (1949).
  • [8] D. Steppenbeck, et al., “Evidence for a new nuclear ‘magic number’ from the level structure of 54Ca”, Nature, 502, 207, (2013).
  • [9] N. Shimizu, “Nuclear shell-model code for massive parallel computation, KSHELL”, arXiv:1310.5431 [nucl-th], (2013).
  • [10]http://peiluan-tai.com/physics/shell_model.html (Erişim zamanı; Nisan, 10, 2020).
  • [11] I. Talmi, “Fifty Years of the Shell Model — The Quest for the Effective Interaction”, Advances in Nuclear Physics, Vol. 27, 1-275, (2003)
  • [12] O. Haxel, etal., “On the "Magic Numbers" in Nuclear Structure”. Phys. Rev., 75, 1766-1766, (1949).
  • [13] M.G. Mayer, “Nuclear Configurations in the Spin-Orbit Coupling Model. I. Empirical Evidence”, Phys. Rev., 78, 16-21, (1950).
  • [14] D.J. Deana, et al., “Effective interactions and the nuclear shell-model”, Progress in Particle and Nuclear Physics 53, 419–500, (2004).
  • [15] Oxbash for Windows, B. A. Brown, et al., MSU_NSCL report number 1289, (2004). [16]ANTOINE,http://www.iphc.cnrs.fr/nutheo/code_antoine/menu.html (Erişim zamanı; Nisan, 10, 2020).
  • [17] B.A. Brown, W.D.M. Rae, “The Shell-Model Code NuShellX@MSU”, Nucl. Data Sheets, 120, 115-118, (2014).
  • [18] C.W. Jhonson, et al., “BIGSTICK: A flexible configuration-interaction shell-model code”, arXiv:1801.08432v1 [physics.comp-ph], (2018).
  • [19]REDSTICK,http://www.phys.lsu.edu/faculty/cjohnson/redstick.html (Erişim zamanı; Nisan, 10, 2020).
  • [20] S. Raman, et al., “Transition probability from the ground to the first-excited 2+ state of even–even nuclides”, Atomic Data and Nuclear Data Tables, 78, 1-128, (2001).
  • [21] W. Chung, Ph. D. thesis, Michigan State Univ., (1976).
  • [22] B.A Brown, et al., “Semi-empirical effective interactions for the 1s-Od shell”, Ann. Phys. 182, 191-236, (1988).
  • [23] B. M. Preedom and B. H. Wildenthal, “Shell-Model Calculations for 22Na and 22Ne”, Phys. Rev. C, 6, 1633-1644 (1972).
  • [24] S. Akkoyun, et al., “Improvement Studies of an Effective Interaction for N=Z sd-shell Nuclei by Neural Networks”, arXiv:2001.08561v1 [nucl-th], (2020).
  • [25] B.H.Wildenthal, “Empirical strengths of spin operators in nuclei”, Progress in Particle and Nuclear Physics, 11, 5-51, (1984).
  • [26] B. A. Brown and B. H. Wildenthal, “Status of the Nuclear Shell model”, Ann. Rev. Nucl. Part. Sci. 38 29-66, (1988).
  • [27] B.A. Brown and W.A. Richter, “New “USD” Hamiltonians for the sd shell”, Phys. Rev. C, 74, 034315 (2006).
  • [33] Kinsey, R. R., et al., The NUDAT/PCNUDAT Program for Nuclear Data, paper submitted to the 9th International Symposium of Capture Gamma-Ray Spectroscopy and Related Topics, Budapest, Hungary, October 1996. Data extracted from the NUDAT database, 2.8 (Nisan, 01, 2020).
  • [34] B. Pritychenko, et al., “B(E2) Evaluation for 01+ -> 21+ Transitions in Even-Even Nuclei”, Nuclear Data Sheets, 120, 112-114, (2014).
  • [35] Y. Yanagisawa, et al., “The first excited state of 30Ne studied by proton inelastic scatteringin reversed kinematics”, Physics Letters B, 566, 84–89, (2003).
  • [36] E. K. Warburton, et al., “Mass systematics for A =29—44 nuclei: The deformed A~32 region”, Phys Rev C, 41, 1147-1166, (1990).

Investigation of Nuclear Structures of Ne Isotopes by Nuclear Shell Model

Year 2021, Volume: 9 Issue: 2, 296 - 301, 28.05.2021
https://doi.org/10.21541/apjes.718960

Abstract

One of the common methods used to investigate the nuclear structures of atomic nuclei is the nuclear shell model. Similar to the placement of atomic electrons into orbits, in the nuclear shell model, protons and neutrons are thought to fill the orbits within the nucleus, following the principle of Pauli's exclusion. These orbits are grouped to form shells, which are said to be closed if all possible places in a shell are full. Atomic nuclei with closed shells are very stable and valence nucleons that are more than these nuclei are included in the nuclear shell model calculations. In this study, the nuclear shell model was used to investigate the nuclear structure of even-even Ne nuclei by considering the 16O core as a closed-shell nucleus. Single-particle orbits d5/2, s1/2 and d3/2 are taken into account and different parameter sets are used for two-body interactions between valance nucleons. The results were compared with each other and with current literature values. It was seen that the closest results to the experimental values were obtained with parameter sets of usdb and sdnn. In the 18Ne isotope with magic neutron number, it was seen that the first excited level energy was found to be large as expected. Then, this excitation energy decreases for the 20Ne and 22Ne nuclei and rises again when the orbits become full.

References

  • [1] A. Bohr A., B.R. Mottelson, Nuclear Structure Vol. 1. New York: W.A. Benjamin, 1969.
  • [2] I. Talmi, I, “55 years of the shell model: a challenge to nuclear many-body theory”, Int. J. Mod. Phys. E, 14, 821-844, (2005).
  • [3] E. Caurier, etal., “The shell model as a unified view of nuclear structure”, Rev. Mod. Phy., 77, 427-488, (2005).
  • [4] B.A. Brown, “The Nuclear Shell Model Towards the Drip Lines”, Prog. Part. Nucl. Phys., 47, 517-599, (2001).
  • [5] K.L.G, Heyde, The Nuclear Shell Model, Berlin Heidelberg: Springer-Verlag, 1990.
  • [6] M.G. Mayer, “On Closed Shells in Nuclei”, Phys. Rev., 74, 235-236, (1948).
  • [7] M.G. Mayer, “On Closed Shells in Nuclei. II”, Phys. Rev., 75, 1969-1970, (1949).
  • [8] D. Steppenbeck, et al., “Evidence for a new nuclear ‘magic number’ from the level structure of 54Ca”, Nature, 502, 207, (2013).
  • [9] N. Shimizu, “Nuclear shell-model code for massive parallel computation, KSHELL”, arXiv:1310.5431 [nucl-th], (2013).
  • [10]http://peiluan-tai.com/physics/shell_model.html (Erişim zamanı; Nisan, 10, 2020).
  • [11] I. Talmi, “Fifty Years of the Shell Model — The Quest for the Effective Interaction”, Advances in Nuclear Physics, Vol. 27, 1-275, (2003)
  • [12] O. Haxel, etal., “On the "Magic Numbers" in Nuclear Structure”. Phys. Rev., 75, 1766-1766, (1949).
  • [13] M.G. Mayer, “Nuclear Configurations in the Spin-Orbit Coupling Model. I. Empirical Evidence”, Phys. Rev., 78, 16-21, (1950).
  • [14] D.J. Deana, et al., “Effective interactions and the nuclear shell-model”, Progress in Particle and Nuclear Physics 53, 419–500, (2004).
  • [15] Oxbash for Windows, B. A. Brown, et al., MSU_NSCL report number 1289, (2004). [16]ANTOINE,http://www.iphc.cnrs.fr/nutheo/code_antoine/menu.html (Erişim zamanı; Nisan, 10, 2020).
  • [17] B.A. Brown, W.D.M. Rae, “The Shell-Model Code NuShellX@MSU”, Nucl. Data Sheets, 120, 115-118, (2014).
  • [18] C.W. Jhonson, et al., “BIGSTICK: A flexible configuration-interaction shell-model code”, arXiv:1801.08432v1 [physics.comp-ph], (2018).
  • [19]REDSTICK,http://www.phys.lsu.edu/faculty/cjohnson/redstick.html (Erişim zamanı; Nisan, 10, 2020).
  • [20] S. Raman, et al., “Transition probability from the ground to the first-excited 2+ state of even–even nuclides”, Atomic Data and Nuclear Data Tables, 78, 1-128, (2001).
  • [21] W. Chung, Ph. D. thesis, Michigan State Univ., (1976).
  • [22] B.A Brown, et al., “Semi-empirical effective interactions for the 1s-Od shell”, Ann. Phys. 182, 191-236, (1988).
  • [23] B. M. Preedom and B. H. Wildenthal, “Shell-Model Calculations for 22Na and 22Ne”, Phys. Rev. C, 6, 1633-1644 (1972).
  • [24] S. Akkoyun, et al., “Improvement Studies of an Effective Interaction for N=Z sd-shell Nuclei by Neural Networks”, arXiv:2001.08561v1 [nucl-th], (2020).
  • [25] B.H.Wildenthal, “Empirical strengths of spin operators in nuclei”, Progress in Particle and Nuclear Physics, 11, 5-51, (1984).
  • [26] B. A. Brown and B. H. Wildenthal, “Status of the Nuclear Shell model”, Ann. Rev. Nucl. Part. Sci. 38 29-66, (1988).
  • [27] B.A. Brown and W.A. Richter, “New “USD” Hamiltonians for the sd shell”, Phys. Rev. C, 74, 034315 (2006).
  • [33] Kinsey, R. R., et al., The NUDAT/PCNUDAT Program for Nuclear Data, paper submitted to the 9th International Symposium of Capture Gamma-Ray Spectroscopy and Related Topics, Budapest, Hungary, October 1996. Data extracted from the NUDAT database, 2.8 (Nisan, 01, 2020).
  • [34] B. Pritychenko, et al., “B(E2) Evaluation for 01+ -> 21+ Transitions in Even-Even Nuclei”, Nuclear Data Sheets, 120, 112-114, (2014).
  • [35] Y. Yanagisawa, et al., “The first excited state of 30Ne studied by proton inelastic scatteringin reversed kinematics”, Physics Letters B, 566, 84–89, (2003).
  • [36] E. K. Warburton, et al., “Mass systematics for A =29—44 nuclei: The deformed A~32 region”, Phys Rev C, 41, 1147-1166, (1990).
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Serkan Akkoyun 0000-0002-8996-3385

Tuncay Bayram 0000-0003-3704-0818

Publication Date May 28, 2021
Submission Date April 12, 2020
Published in Issue Year 2021 Volume: 9 Issue: 2

Cite

IEEE S. Akkoyun and T. Bayram, “Nükleer Kabuk Modeli ile Ne İzotoplarının Nükleer Yapısının İncelenmesi”, APJES, vol. 9, no. 2, pp. 296–301, 2021, doi: 10.21541/apjes.718960.