Araştırma Makalesi
Zotero Mendeley EndNote BibTex Kaynak Göster

Hill Tipi Kas Modeli ile Pazu Kasının Mekanik Analizi: Ön Kol Bükme Hareketinin Benzetimi

Yıl 2021, Cilt 9, Sayı 2, 354 - 359, 28.05.2021
https://doi.org/10.21541/apjes.742541

Öz

İskelet kaslarının dinamik analizleri için matematiksel yöntemler veya bilgisayar yazılımları kullanılmaktadır. Matematiksel yöntemler doğrusal olmayan yapılarından dolayı uğraştırıcı olabilir. Kas mekaniğine yönelik geliştirilen özel yazılımları kullanmak ise uzmanlık gerektirmektedir. Dolayısıyla kas mekaniği analizleri için herkes tarafından kolaylıkla kullanılabilecek bir model geliştirilmesine ihtiyaç vardır. Bu çalışmada MATLAB araçları kullanılarak pazu kası için bir benzetim modeli önerilmektedir. Model kullanılarak dambıl ile ön kol bükme egzersizinin dinamik analizi gerçekleştirilmiştir. Dirsek eklemi momenti, pazu kası kuvveti ve kas işi hesaplanmıştır. Eklem momenti değişiminin 14.45 – 28.24 Nm arasında, maksimum kas kuvvetinin 941.5 N ve kas işinin 27.58 J olduğu bulunmuştur. Elde edilen sonuçların, protez ve ortez tasarımlarında ve rehabilitasyon süreçlerinin değerlendirilmesinde kullanılabileceği düşünülmektedir. Model üzerinde kolayca değişiklik yapılarak farklı egzersizler ve farklı kas grupları için incelemeler yapılabilir.

Kaynakça

  • K. Serbest, “İskelet Kaslarının Yapısı ve Biyomekaniği,” Akademik Platfom Mühendislik ve Fen Bilimleri Dergisi, vol. 2, no. 3, pp. 41-51, 2014.
  • A. F. Huxley, “Muscular contraction,” J Physiol, vol. 243, no. 1, pp. 1-43, 1974.
  • S. M. Mirvakili and I. W. Hunter, “Artificial Muscles: Mechanisms, Applications, and Challenges,” Advanced Matarials, vol. 30, no. 6, pp. 1-28, 2018.
  • T. Yan, M. Cempini, C. M. Oddo, and N. Vitiello, “Review of assistive strategies in powered lower-limb orthoses and exoskeletons,” Robotics and Autonomous Systems, vol. 64, pp. 120-136, 2015.
  • A. W. Andrews and R. W. Bohannon, “Short-term recovery of limb muscle strength after acute stroke,” Arch Phys Med Rehabil, vol. 84, no. 1, pp. 125-130, 2003.
  • H. E. Huxley, “Fifty Years of Muscle and the Sliding Filament Hypothesis,” Eur J Biochem, vol. 271, no. 8, pp. 1403-1415, 2004.
  • J. M. Winters and S. L. Y. Woo, Multiple Muscle Systems Biomechanics and Movement Organization, New York: Springer-Verlag, 1990.
  • A. Crowe, “A mechanical model of muscle and its application to the intrafusal fibres of the mammalian muscle spindle,” J. Biomech., vol. 3, pp. 583-592, 1970.
  • T. F. Yu and A. J. Wilson, “A passive movement method for parameter estimation of a musculo-skeletal arm model incorporating a modified hill muscle model,” Comput Meth Prog Bio, vol. 114, pp. e46-e59, 2014.
  • X. Wang, X. Tao, and R. C. H. So, “A Bio-mechanical Model for Elbow Isokinetic and Isotonic Flexions,” Scientific Reports, vol. 7, pp. 1-10, 2017.
  • O. Rohrle, E. Ramasamy, and S. Schmitt, “Forward dynamics applied to a three-dimensional continuum-mechanical model of the upper limb,” Proc. Appl. Math. Mech., vol. 11, pp. 155-116, 2011.
  • M. Damsgaard, J. Rasmussen, S. T. Christensen, E. Surma, and M. de Zee, “Analysis of musculoskeletal systems in the AnyBody Modeling System,” Simul Model Pract Theory, vol. 14, pp. 1100-1111, 2006.
  • S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen, “OpenSim: Open-Source Software to Create And Analyze Dynamis Simulations of Movement,” IEEE Trans. Biomed. Eng., vol. 54, no. 11, pp. 1940-1950, 2007.
  • X. Huang and X. Wu, “Simulation Analysis on Mechanical Effect Based on ADAMS and Matlab Software,” Applied Mechanics and Materials, vol. 427-429, pp. 388-391, 2013.
  • J. M. Ford, “Skeletal Muscle Contraction Simulation: A Comparison in Modeling”, Ph. D. thesis, University of South Florida, 2013.
  • C. L. Lim, N. B. Jones, S. K. Spurgeon, and J. J. A. Scott, “Modelling of knee joint muscle during the swing phase of gait – a forward dynamics approach using MATLAB/Simulink,” Simul Model Pract Theory, vol. 11, pp. 91-107, 2003.
  • K. Serbest, M. Cilli and O. Eldogan, “Biomechanical effects of daily physical activities on the lower limb,” Acta Orthop Traumatol Turc, vol. 49, no. 1, pp. 85-90, 2015.
  • K. Serbest, M. Cilli and O. Eldogan, “A dynamic virtual hand model for estimating joint torques during the wrist and fingers movements,” Journal of Engineering Science and Technology, vol. 13, no. 6, pp. 1665-1676, 2018.
  • K. Serbest, M. Berisha, and M. Cilli, “Dynamic Analysis of Three Different High Bar Dismounts in the Simmechanics Environment,” J Mech Med Biol, vol. 18, no. 3, pp. 1850030-1-1850030-11, 2018.
  • D. Gordon, E. Robertson, G. E. Caldwell, J. Hamill, G. Kamen and S. N. Whittlesey, Research methods in biomechanics, Champaign: Human Kinetics, 2004.
  • R. F. Chandler, C. E. Clauser, J. T. McConville, H. M. Reynolds, and J. W. Young, “Investigation of inertial properties of the human body” Aerospace Medical Research Laboratory, Technical Report DOT-HS-017-2-315-1A, (1975).
  • Z. U. Zeren, “Simulation of a 1-d muscle model in Simulink”, Master thesis, Middle East Technical University, Ankara, 2007.
  • A. Tozeren, Human Body Dynamics Classical Mechanics and Human Movement, New York: Springer-Verlag, 2000.
  • J. H. Challis and D. G. Kerwin, “Determining individual muscle forces during maximal, activity: Model development, parameter determination, and validation,” Human Movement Science, vol. 13, pp. 29-61, 1994.
  • K. Nolte, P. E. Krüger, and P. S. Els, “Three dimensional musculoskeletal modelling of the seated biceps curl resistance training exercise,” Sport Biomechanics, vol. 10, pp. 146-160, 2011.

Yıl 2021, Cilt 9, Sayı 2, 354 - 359, 28.05.2021
https://doi.org/10.21541/apjes.742541

Öz

Mathematical methods or computer software are used for dynamic analysis of skeletal muscles. Mathematical methods could be challenging because of nonlinear equations forms. The use of special software for muscle mechanics requires expertise. Therefore, a model needs to be developed that can be easily used by researchers to analyse muscle mechanics. In this study, a simulation model is proposed for biceps brachii using MATLAB tools. A dynamic analysis of the forearm curls exercise with dumbbell was performed using this simulation model. Elbow joint moment, biceps brachii force and muscle work were calculated. The results were as follows: The joint moment was between 14.45 – 28.24 Nm, the maximum muscle force was 941.5 N and the muscle work was 27.58 J. It is thought that the results can be used in prosthesis and orthosis designs and in the evaluation of rehabilitation processes. Examinations for different exercises and different muscle groups can be carried out by modifying the model easily.

Kaynakça

  • K. Serbest, “İskelet Kaslarının Yapısı ve Biyomekaniği,” Akademik Platfom Mühendislik ve Fen Bilimleri Dergisi, vol. 2, no. 3, pp. 41-51, 2014.
  • A. F. Huxley, “Muscular contraction,” J Physiol, vol. 243, no. 1, pp. 1-43, 1974.
  • S. M. Mirvakili and I. W. Hunter, “Artificial Muscles: Mechanisms, Applications, and Challenges,” Advanced Matarials, vol. 30, no. 6, pp. 1-28, 2018.
  • T. Yan, M. Cempini, C. M. Oddo, and N. Vitiello, “Review of assistive strategies in powered lower-limb orthoses and exoskeletons,” Robotics and Autonomous Systems, vol. 64, pp. 120-136, 2015.
  • A. W. Andrews and R. W. Bohannon, “Short-term recovery of limb muscle strength after acute stroke,” Arch Phys Med Rehabil, vol. 84, no. 1, pp. 125-130, 2003.
  • H. E. Huxley, “Fifty Years of Muscle and the Sliding Filament Hypothesis,” Eur J Biochem, vol. 271, no. 8, pp. 1403-1415, 2004.
  • J. M. Winters and S. L. Y. Woo, Multiple Muscle Systems Biomechanics and Movement Organization, New York: Springer-Verlag, 1990.
  • A. Crowe, “A mechanical model of muscle and its application to the intrafusal fibres of the mammalian muscle spindle,” J. Biomech., vol. 3, pp. 583-592, 1970.
  • T. F. Yu and A. J. Wilson, “A passive movement method for parameter estimation of a musculo-skeletal arm model incorporating a modified hill muscle model,” Comput Meth Prog Bio, vol. 114, pp. e46-e59, 2014.
  • X. Wang, X. Tao, and R. C. H. So, “A Bio-mechanical Model for Elbow Isokinetic and Isotonic Flexions,” Scientific Reports, vol. 7, pp. 1-10, 2017.
  • O. Rohrle, E. Ramasamy, and S. Schmitt, “Forward dynamics applied to a three-dimensional continuum-mechanical model of the upper limb,” Proc. Appl. Math. Mech., vol. 11, pp. 155-116, 2011.
  • M. Damsgaard, J. Rasmussen, S. T. Christensen, E. Surma, and M. de Zee, “Analysis of musculoskeletal systems in the AnyBody Modeling System,” Simul Model Pract Theory, vol. 14, pp. 1100-1111, 2006.
  • S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen, “OpenSim: Open-Source Software to Create And Analyze Dynamis Simulations of Movement,” IEEE Trans. Biomed. Eng., vol. 54, no. 11, pp. 1940-1950, 2007.
  • X. Huang and X. Wu, “Simulation Analysis on Mechanical Effect Based on ADAMS and Matlab Software,” Applied Mechanics and Materials, vol. 427-429, pp. 388-391, 2013.
  • J. M. Ford, “Skeletal Muscle Contraction Simulation: A Comparison in Modeling”, Ph. D. thesis, University of South Florida, 2013.
  • C. L. Lim, N. B. Jones, S. K. Spurgeon, and J. J. A. Scott, “Modelling of knee joint muscle during the swing phase of gait – a forward dynamics approach using MATLAB/Simulink,” Simul Model Pract Theory, vol. 11, pp. 91-107, 2003.
  • K. Serbest, M. Cilli and O. Eldogan, “Biomechanical effects of daily physical activities on the lower limb,” Acta Orthop Traumatol Turc, vol. 49, no. 1, pp. 85-90, 2015.
  • K. Serbest, M. Cilli and O. Eldogan, “A dynamic virtual hand model for estimating joint torques during the wrist and fingers movements,” Journal of Engineering Science and Technology, vol. 13, no. 6, pp. 1665-1676, 2018.
  • K. Serbest, M. Berisha, and M. Cilli, “Dynamic Analysis of Three Different High Bar Dismounts in the Simmechanics Environment,” J Mech Med Biol, vol. 18, no. 3, pp. 1850030-1-1850030-11, 2018.
  • D. Gordon, E. Robertson, G. E. Caldwell, J. Hamill, G. Kamen and S. N. Whittlesey, Research methods in biomechanics, Champaign: Human Kinetics, 2004.
  • R. F. Chandler, C. E. Clauser, J. T. McConville, H. M. Reynolds, and J. W. Young, “Investigation of inertial properties of the human body” Aerospace Medical Research Laboratory, Technical Report DOT-HS-017-2-315-1A, (1975).
  • Z. U. Zeren, “Simulation of a 1-d muscle model in Simulink”, Master thesis, Middle East Technical University, Ankara, 2007.
  • A. Tozeren, Human Body Dynamics Classical Mechanics and Human Movement, New York: Springer-Verlag, 2000.
  • J. H. Challis and D. G. Kerwin, “Determining individual muscle forces during maximal, activity: Model development, parameter determination, and validation,” Human Movement Science, vol. 13, pp. 29-61, 1994.
  • K. Nolte, P. E. Krüger, and P. S. Els, “Three dimensional musculoskeletal modelling of the seated biceps curl resistance training exercise,” Sport Biomechanics, vol. 10, pp. 146-160, 2011.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Kasım SERBEST (Sorumlu Yazar)
Sakarya University of Applied Sciences
0000-0002-0064-4020
Türkiye

Yayımlanma Tarihi 28 Mayıs 2021
Başvuru Tarihi 25 Mayıs 2020
Kabul Tarihi 17 Ocak 2021
Yayınlandığı Sayı Yıl 2021, Cilt 9, Sayı 2

Kaynak Göster

IEEE K. Serbest , "Hill Tipi Kas Modeli ile Pazu Kasının Mekanik Analizi: Ön Kol Bükme Hareketinin Benzetimi", Academic Platform - Journal of Engineering and Science, c. 9, sayı. 2, ss. 354-359, May. 2021, doi:10.21541/apjes.742541