Research Article
BibTex RIS Cite
Year 2021, Volume: 63 Issue: 1, 1 - 16, 30.06.2021
https://doi.org/10.33769/aupse.757924

Abstract

References

  • Tofoli, F. L., Pereira, D. C., Paula, W.J., Oliviera Junior, D.S., Survey on non-isolated high-voltage step-up dc-dc topologies based on the boost converter. IET Power Electronics, 8(10) (2015), 2044–2057.
  • Li, W., He, X., Review of nonisolated high-step-up dc/dc converters in photovoltaic grid-connected applications, IEEE Trans. On Industrial Electronics, 58(4) (2011), 1239–1250.
  • Chen, T. M., Chan, C.L., Analysis and design of asymmetrical half bridge flyback converter, IEE Proc.-Elect. Power Appl., 149(6) (2002), 433-440.
  • Soltanzadeh, K., Khalilian, H., Dehghani, M., Analysis, design and implementation of a zero voltage switching two-switch CCM flyback converter, IET Circuits, Devices & Systems, 10(1) (2015), 20-28.
  • Murthy-Bellur, D., Kondrath, N., Kazimierczuk, M.K., Transformer winding loss caused by skin and proximity effects including harmonics in pulse-width modulated dc-dc flyback converters for the continuous conduction mode, IET Power Electronics, 4(4) (2010), 363-373.
  • Yan, Z., Ai-ming, S., Simplified ferrite core loss separation model for switched mode power converter, IET Power Electronics, 9(3) (2015), 529-535.
  • GaN Systems. Top-side cooled 100 V E-mode GaN transistor, GS61008T datasheet, (2017).
  • Zhu, B., Wang, H., Vilathgamuwa, D.M., Single-switch high step-up boost converter based on a novel voltage multiplier, IET Power Electronics, 12(14) (2019), 3732-3738.
  • Choi, K., Kim, Y., Kim, K., Kim, S., Output voltage tracking controller embedding auto-tuning algorithm for DC/DC boost converters, IET Power Electronics, 12(14) (2019), 3767-3773.
  • Aghdam Meinagh, F. A., Babaei, E., Tarzamni, H., Kolahian, P., Isolated high step-up switched-boost DC/DC converter with modified control method, IET Power Electronics, 12(14) (2019), 3635-3645.
  • Appikonda, M., Kaliaperumal, D., Modelling and control of dual input boost converter with voltage multiplier cell, IET Circuits, Devices & Systems, 13(8) (2019), 1267-1276.
  • Spiazzi, G., Analysis and design of the soft-switched clamped-resonant interleaved boost converter, CPSS Transactions on Power Electronics and Applications, 4(4) (2019), 276-287.
  • Shaneh, M., Niroomand, M., Adib, E., Ultrahigh-Step-Up Nonisolated Interleaved Boost Converter, IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(3) (2020), 2747-2758.
  • Yang, F., Li, C., Cao, Y., Yao, K., Two-Phase Interleaved Boost PFC Converter With Coupled Inductor Under Single-Phase Operation, IEEE Transactions on Power Electronics, 35(1) (2020), 169-184.
  • Zheng, Y., Smedley, K.M., Analysis and Design of a Single-Switch High Step-Up Coupled-Inductor Boost Converter, IEEE Transactions on Power Electronics, 35(1) (2020), 535-545.
  • Radin, R.L., Sawan, M., Galup-Montoro, C., Schneider, M.C., A 7.5-mV-Input Boost Converter for Thermal Energy Harvesting With 11-mV Self-Startup, IEEE Transactions on Circuits and Systems II: Express Briefs, 67(8) (2020), 1379-1383.
  • Janabi, A., Wang, B., Switched-Capacitor Voltage Boost Converter for Electric and Hybrid Electric Vehicle Drives, IEEE Transactions on Power Electronics, 35(6) (2020), 5615-5624.
  • Matei, C., Urbonas, J., Votsi, H., Kendig, D., Aaen, P.H., Dynamic Temperature Measurements of a GaN DC–DC Boost Converter at MHz Frequencies, IEEE Transactions on Power Electronics, 35(8) (2020), 8303-8310.
  • Eskandari, R., Babaei, E., Sabahi, M., Ojaghkandi, S.R., Interleaved high step-up zero-voltage zero-current switching boost DC–DC converter, IET Power Electronics, 13(1) (2020), 96-103.
  • Yuan, Y., Zhang, Z., Mei, X., Boost-integrated LCL resonant converter with high voltage gain, IET Power Electronics, 13(2) (2020), 332-339.
  • Hu, X., Liu, X., Ma, P., Jiang, S., An Ultrahigh Voltage Gain Hybrid-Connected Boost Converter With Ultralow Distributed Voltage Stress, IEEE Transactions on Power Electronics, 35(10) (2020), 10385-10395.
  • Jhang, J., Wu, H., Hsu, T., Wei, C., Design of a Boost DC–DC Converter With 82-mV Startup Voltage and Fully Built-in Startup Circuits for Harvesting Thermoelectric Energy, IEEE Solid-State Circuits Letters, 3 (2020), 54-57.
  • Sedaghati, F., Pourjafar, S., Analysis and implementation of a boost DC–DC converter with high voltage gain and continuous input current, IET Power Electronics, 13(4) (2020), 798-807.
  • AlZawaideh, A., Boiko, I., Analysis of a Sliding Mode DC–DC Boost Converter Through LPRS of a Nonlinear Plant, IEEE Transactions on Power Electronics, 35(11) (2020), 12321-12331.
  • Li, G., Jin, X., Chen, X, Mu, X, A novel quadratic boost converter with low inductor currents, CPSS Transactions on Power Electronics and Applications, 5(1) (2020), 1-10.
  • Zhang, K., Ye, T., Yan, Z., Song, B., Hu, A.P., Obtaining Maximum Efficiency of Inductive Power-Transfer System by Impedance Matching Based on Boost Converter, IEEE Transactions on Transportation Electrification, 6 (2) (2020), 488-496.
  • Leng, M., Zhou, G., Tian, Q., Xu, G., Blaabjerg, F., Small Signal Modeling and Design Analysis for Boost Converter With Valley V2 Control, IEEE Transactions on Power Electronics, 35(12) (2020), 13475-13487.
  • Guo, J. et al. A Comprehensive Analysis for High-Power Density, High-Efficiency 60 kW Interleaved Boost Converter Design for Electrified Powertrains, IEEE Transactions on Vehicular Technology, 69(7) (2020), 7131-7145.
  • Meraj, M., Bhaskar, M.S., Iqbal, A., Al-Emadi, N., Rahman, S., Interleaved Multilevel Boost Converter With Minimal Voltage Multiplier Components for High-Voltage Step-Up Applications, IEEE Transactions on Power Electronics, 35(12) (2020), 12816-12833.
  • Hu, R., Zeng, J., Liu, J., Guo, Z., Yang, N., An Ultrahigh Step-Up Quadratic Boost Converter Based on Coupled-Inductor, IEEE Transactions on Power Electronics, 35(12) (2020), 13200-13209.
  • Lopez-Santos, O., Mayo-Maldonado, J.C., Rosas-Caro, J.C., Valdez-Resendiz, J.E., Zambrano-Prada, D.A, Ruiz-Martinez, O.F., Quadratic boost converter with low-output-voltage ripple, IET Power Electronics, 13(8) (2020), 1605-1612.
  • Santos Spencer Andrade, A. M., da Silva Martins, M.L., Isolated boost converter based high step-up topologies for PV microinverter applications, IET Power Electronics, 13(7) (2020), 1353-1363.
  • Wang, L., Wu, Q., Tang, W., Improved Energy Balance Control for Boost Converters Without Estimating Circuit Energy Losses, IEEE Access, 8 (2020), 146323-146330.
  • Zeng, Y., Li, H., Wang, W., Zhang, B., Zheng, T.Q., Cost-effective clamping capacitor boost converter with high voltage gain, IET Power Electronics, 13(9) (2020), 1775-1786.
  • Rostami, S., Abbasi, V., Talebi, N., Kerekes, T., Three-port DC-DC converter based on quadratic boost converter for stand-alone PV/battery systems, IET Power Electronics, 13(10) (2020), 2106-2118.

Enhanced boost converter with gan based power switches and switched-capacitor

Year 2021, Volume: 63 Issue: 1, 1 - 16, 30.06.2021
https://doi.org/10.33769/aupse.757924

Abstract

To increase the voltage gain of power electronic circuits, several voltage converters have been designed by researchers. Especially, the boost based converters are used by designers for numerous devices and systems because of their reliability. Generally, in these studies, researchers propose to use high frequency transformers, silicon based diodes and inductance based sub-circuits. However, the improvement on new generation power transistors should be considered as an alternative way to provide these goals because of their lower inner resistances, lower switching losses and adoptability for new generation devices. Therefore, in this paper, usage of these kinds of semiconductors to improve the voltage gain performance of traditional boost converter is proposed. With this enhanced design and usage of new semiconductor switches, we obtain approximately 70% more output voltage gain than traditional boost converter. The proposed converter provides significant gain, high scalability in duty cycle vs output voltage usage and portability for weight restricted systems. The enhanced boost based converter is modelled in Simulink to verify the analytical voltage gain equations. Finally, the proposed model is compared with traditional boost converter in term of gain performance.

References

  • Tofoli, F. L., Pereira, D. C., Paula, W.J., Oliviera Junior, D.S., Survey on non-isolated high-voltage step-up dc-dc topologies based on the boost converter. IET Power Electronics, 8(10) (2015), 2044–2057.
  • Li, W., He, X., Review of nonisolated high-step-up dc/dc converters in photovoltaic grid-connected applications, IEEE Trans. On Industrial Electronics, 58(4) (2011), 1239–1250.
  • Chen, T. M., Chan, C.L., Analysis and design of asymmetrical half bridge flyback converter, IEE Proc.-Elect. Power Appl., 149(6) (2002), 433-440.
  • Soltanzadeh, K., Khalilian, H., Dehghani, M., Analysis, design and implementation of a zero voltage switching two-switch CCM flyback converter, IET Circuits, Devices & Systems, 10(1) (2015), 20-28.
  • Murthy-Bellur, D., Kondrath, N., Kazimierczuk, M.K., Transformer winding loss caused by skin and proximity effects including harmonics in pulse-width modulated dc-dc flyback converters for the continuous conduction mode, IET Power Electronics, 4(4) (2010), 363-373.
  • Yan, Z., Ai-ming, S., Simplified ferrite core loss separation model for switched mode power converter, IET Power Electronics, 9(3) (2015), 529-535.
  • GaN Systems. Top-side cooled 100 V E-mode GaN transistor, GS61008T datasheet, (2017).
  • Zhu, B., Wang, H., Vilathgamuwa, D.M., Single-switch high step-up boost converter based on a novel voltage multiplier, IET Power Electronics, 12(14) (2019), 3732-3738.
  • Choi, K., Kim, Y., Kim, K., Kim, S., Output voltage tracking controller embedding auto-tuning algorithm for DC/DC boost converters, IET Power Electronics, 12(14) (2019), 3767-3773.
  • Aghdam Meinagh, F. A., Babaei, E., Tarzamni, H., Kolahian, P., Isolated high step-up switched-boost DC/DC converter with modified control method, IET Power Electronics, 12(14) (2019), 3635-3645.
  • Appikonda, M., Kaliaperumal, D., Modelling and control of dual input boost converter with voltage multiplier cell, IET Circuits, Devices & Systems, 13(8) (2019), 1267-1276.
  • Spiazzi, G., Analysis and design of the soft-switched clamped-resonant interleaved boost converter, CPSS Transactions on Power Electronics and Applications, 4(4) (2019), 276-287.
  • Shaneh, M., Niroomand, M., Adib, E., Ultrahigh-Step-Up Nonisolated Interleaved Boost Converter, IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(3) (2020), 2747-2758.
  • Yang, F., Li, C., Cao, Y., Yao, K., Two-Phase Interleaved Boost PFC Converter With Coupled Inductor Under Single-Phase Operation, IEEE Transactions on Power Electronics, 35(1) (2020), 169-184.
  • Zheng, Y., Smedley, K.M., Analysis and Design of a Single-Switch High Step-Up Coupled-Inductor Boost Converter, IEEE Transactions on Power Electronics, 35(1) (2020), 535-545.
  • Radin, R.L., Sawan, M., Galup-Montoro, C., Schneider, M.C., A 7.5-mV-Input Boost Converter for Thermal Energy Harvesting With 11-mV Self-Startup, IEEE Transactions on Circuits and Systems II: Express Briefs, 67(8) (2020), 1379-1383.
  • Janabi, A., Wang, B., Switched-Capacitor Voltage Boost Converter for Electric and Hybrid Electric Vehicle Drives, IEEE Transactions on Power Electronics, 35(6) (2020), 5615-5624.
  • Matei, C., Urbonas, J., Votsi, H., Kendig, D., Aaen, P.H., Dynamic Temperature Measurements of a GaN DC–DC Boost Converter at MHz Frequencies, IEEE Transactions on Power Electronics, 35(8) (2020), 8303-8310.
  • Eskandari, R., Babaei, E., Sabahi, M., Ojaghkandi, S.R., Interleaved high step-up zero-voltage zero-current switching boost DC–DC converter, IET Power Electronics, 13(1) (2020), 96-103.
  • Yuan, Y., Zhang, Z., Mei, X., Boost-integrated LCL resonant converter with high voltage gain, IET Power Electronics, 13(2) (2020), 332-339.
  • Hu, X., Liu, X., Ma, P., Jiang, S., An Ultrahigh Voltage Gain Hybrid-Connected Boost Converter With Ultralow Distributed Voltage Stress, IEEE Transactions on Power Electronics, 35(10) (2020), 10385-10395.
  • Jhang, J., Wu, H., Hsu, T., Wei, C., Design of a Boost DC–DC Converter With 82-mV Startup Voltage and Fully Built-in Startup Circuits for Harvesting Thermoelectric Energy, IEEE Solid-State Circuits Letters, 3 (2020), 54-57.
  • Sedaghati, F., Pourjafar, S., Analysis and implementation of a boost DC–DC converter with high voltage gain and continuous input current, IET Power Electronics, 13(4) (2020), 798-807.
  • AlZawaideh, A., Boiko, I., Analysis of a Sliding Mode DC–DC Boost Converter Through LPRS of a Nonlinear Plant, IEEE Transactions on Power Electronics, 35(11) (2020), 12321-12331.
  • Li, G., Jin, X., Chen, X, Mu, X, A novel quadratic boost converter with low inductor currents, CPSS Transactions on Power Electronics and Applications, 5(1) (2020), 1-10.
  • Zhang, K., Ye, T., Yan, Z., Song, B., Hu, A.P., Obtaining Maximum Efficiency of Inductive Power-Transfer System by Impedance Matching Based on Boost Converter, IEEE Transactions on Transportation Electrification, 6 (2) (2020), 488-496.
  • Leng, M., Zhou, G., Tian, Q., Xu, G., Blaabjerg, F., Small Signal Modeling and Design Analysis for Boost Converter With Valley V2 Control, IEEE Transactions on Power Electronics, 35(12) (2020), 13475-13487.
  • Guo, J. et al. A Comprehensive Analysis for High-Power Density, High-Efficiency 60 kW Interleaved Boost Converter Design for Electrified Powertrains, IEEE Transactions on Vehicular Technology, 69(7) (2020), 7131-7145.
  • Meraj, M., Bhaskar, M.S., Iqbal, A., Al-Emadi, N., Rahman, S., Interleaved Multilevel Boost Converter With Minimal Voltage Multiplier Components for High-Voltage Step-Up Applications, IEEE Transactions on Power Electronics, 35(12) (2020), 12816-12833.
  • Hu, R., Zeng, J., Liu, J., Guo, Z., Yang, N., An Ultrahigh Step-Up Quadratic Boost Converter Based on Coupled-Inductor, IEEE Transactions on Power Electronics, 35(12) (2020), 13200-13209.
  • Lopez-Santos, O., Mayo-Maldonado, J.C., Rosas-Caro, J.C., Valdez-Resendiz, J.E., Zambrano-Prada, D.A, Ruiz-Martinez, O.F., Quadratic boost converter with low-output-voltage ripple, IET Power Electronics, 13(8) (2020), 1605-1612.
  • Santos Spencer Andrade, A. M., da Silva Martins, M.L., Isolated boost converter based high step-up topologies for PV microinverter applications, IET Power Electronics, 13(7) (2020), 1353-1363.
  • Wang, L., Wu, Q., Tang, W., Improved Energy Balance Control for Boost Converters Without Estimating Circuit Energy Losses, IEEE Access, 8 (2020), 146323-146330.
  • Zeng, Y., Li, H., Wang, W., Zhang, B., Zheng, T.Q., Cost-effective clamping capacitor boost converter with high voltage gain, IET Power Electronics, 13(9) (2020), 1775-1786.
  • Rostami, S., Abbasi, V., Talebi, N., Kerekes, T., Three-port DC-DC converter based on quadratic boost converter for stand-alone PV/battery systems, IET Power Electronics, 13(10) (2020), 2106-2118.
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Korhan Cengiz 0000-0001-6594-8861

Publication Date June 30, 2021
Submission Date June 25, 2020
Acceptance Date October 1, 2020
Published in Issue Year 2021 Volume: 63 Issue: 1

Cite

APA Cengiz, K. (2021). Enhanced boost converter with gan based power switches and switched-capacitor. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 63(1), 1-16. https://doi.org/10.33769/aupse.757924
AMA Cengiz K. Enhanced boost converter with gan based power switches and switched-capacitor. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. June 2021;63(1):1-16. doi:10.33769/aupse.757924
Chicago Cengiz, Korhan. “Enhanced Boost Converter With Gan Based Power Switches and Switched-Capacitor”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 63, no. 1 (June 2021): 1-16. https://doi.org/10.33769/aupse.757924.
EndNote Cengiz K (June 1, 2021) Enhanced boost converter with gan based power switches and switched-capacitor. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 63 1 1–16.
IEEE K. Cengiz, “Enhanced boost converter with gan based power switches and switched-capacitor”, Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng., vol. 63, no. 1, pp. 1–16, 2021, doi: 10.33769/aupse.757924.
ISNAD Cengiz, Korhan. “Enhanced Boost Converter With Gan Based Power Switches and Switched-Capacitor”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 63/1 (June 2021), 1-16. https://doi.org/10.33769/aupse.757924.
JAMA Cengiz K. Enhanced boost converter with gan based power switches and switched-capacitor. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. 2021;63:1–16.
MLA Cengiz, Korhan. “Enhanced Boost Converter With Gan Based Power Switches and Switched-Capacitor”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, vol. 63, no. 1, 2021, pp. 1-16, doi:10.33769/aupse.757924.
Vancouver Cengiz K. Enhanced boost converter with gan based power switches and switched-capacitor. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. 2021;63(1):1-16.

Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.