Year 2024,
Volume: 14 Issue: 2, 36 - 45, 31.07.2024
Jonibek Sh. Abdullayev
Kudrat Sh. Ruzmetov
Zokirbek K. Matyakubov
References
- [1] L.A. Aizenberg, Carleman formulas in complex analysis, Science, Novosibirsk, 1990
- [2] G.M. Goluzin, V.I. Krylov, Verallgemeinerung einer Formel von Carleman
und ihre Anwendung auf analytische Fortsetzung, Mat. Sb., 40(2), 1933,
144–149 (in Russian).
- [3] P. Kusis, Introduction to Hp Spaces with an Appendix on Wolff‘s Proof of
the Corona Theorem (Cambridge University Press, Cambridge-New York,
1980; Mir, Moscow, 1984).
- [4] A.M. Kytmanov, T.N. Nikitina, Multidimensional Carleman formulas in
Siegel domains, Izv. Vyssh. Uchebn. Zaved. Mat., 3, 1990, 44–49. (published
in Soviet Math. (Iz. VUZ) 34(3), 1990, 50–56.
- [5] M.M. Lavrent’ev, On the Cauchy problem for Laplace equation, Izv. Akad.
Nauk SSSR. Ser. Mat., 20, 1956, 819–842 (in Russian).
- [6] M.M. Lavrent’ev, V.G. Romanov, S.P. Shishatskii, Neorrektnye zadachi
matematicheskoi fiziki i analiza (III-Posed Problems in Mathematical
Physics and Analysis), Nauka, Moscow, 1980.
- [7] I.I. Privalov, Boundary Properties of Single-Valued Analytic Functions, Izd.
Moskov. Univ., Moscow, 1941 (in Russian).
- [8] L.K. Hua, Harmonic analysis of functions of several complex variables in
the classical domains, Translated from the Russian by Leo Ebner and Adam
Koranyi American Mathematical Society, Providence, R.I. 1963.
- [9] S. Kosbergenov, On the Carleman formula for a matrix ball, Izv. Vyssh.
Uchebn. Zaved. Mat., 1, 1999, 76–79; published in Russian Math. (Iz. VUZ)
43(1), 1999, 72–75.
- [10] G. Khudayberganov, A.M. Kytmanov, B.A. Shaimkulov, Complex analysis
in matrix domains, Monograph., Siberian Federal University, Krasnoyarsk,
2011 (in Russian).
- [11] G. Khudayberganov, A.M. Kytmanov, B.A. Shaimkulov, Analysis in matrix
domains, Siberian Federal University, Krasnoyarsk, 2017 (in Russian).
- [12] B.V. Shabat, Introduction to Complex Analysis. Part II. Functions of Several
Variables, Moscow: Nauka, Physical and mathematical literature, 1985 (in
Russian).
- [13] B.T. Kurbanov, Morera‘s Boundary Theorem in Siegel Domain of the First
Kind, Journal of Siberian Federal University. Mathematics & Physics, 15(2),
2022, 253–260.
- [14] B.A. Shoimkhulov, J.T. Bozorov, Carleman‘s Formula for a Matrix Polydisc,
Journal of Siberian Federal University. Mathematics & Physics, 8(2), 2015,
371–374.
- [15] T. Carleman, Les functions analytiques, Paris, 1926.
- [16] G. Khudayberganov, Z.K. Matyoqubov, Carleman‘s formula for the matrix
upper half-plane, ACTA NUUz., 2/1, 2018, 8-13.
- [17] G. Khudayberganov, Z.K. Matyakubov, Boundary version of Morera theorem for matrix ball of the second type, Journal of Siberian Federal University.
Mathematics & Physics, 7(4), 2014, 466-471.
- [18] G. Khudayberganov, U.S. Rakhmonov, Z.K. Matyakubov, Integral formulas
for some matrix domains, Contemporary Mathematics, 662, 2016, 89-95.
- [19] G. Khudayberganov, U.S. Rakhmonov, Carleman Formula for Matrix
Ball of the Third Type. In: Ibragimov, Z., Levenberg, N., Rozikov, U.,
Sadullaev, A. (eds) Algebra, Complex Analysis, and Pluripotential Theory.
USUZCAMP 2017. Springer Proceedings in Mathematics & Statistics, 264,
Springer, Cham., 2018.
- [20] U.S.Rakhmonov, Z.E.Matyakubov, Carleman‘s formula for the matrix domains of Siegel, Chebyshevskii Sbornik, XXIII(4) (85), 2022, 126-135.
- [21] L. Aizenberg, A. Tumanov, A. Vidras, The class of holomorphic functions
representable by Carleman formula, Ann. Scuola Norm. Sup. Pisa Cl. Sci.,
27(1), 1998, 93–105.
- [22] L. Aizenberg, A. Vidras, On Carleman formulas and on the class of holomorphic functions representable by them, Math. Nachr., 237, 2002, 5-25.
- [23] A. Vidras, On Holomorphic Functions in the Upper Half-Plane Representable
by Carleman Formula, Complex Anal. Oper. Theory, 14(66), 2020, 1-14.
- [24] G. Chailos, A. Vidras, On a Class of Holomorphic Functions Representable
by Carleman Formulas in Some Class of Bounded, Simply Connected Domains From Their Values on an Analytic Arc, Mh Math., 149, 2006, 289–
301.
- [25] L. Aizenberg, A. Vidras, On a class of holomorphic functions representable
by Carleman formulas in the disk from their values on the arc of the circle,
Math. Nachr., 280(1-2), 2007, 5–19.
Carleman’s Integral Formula in Cartesian Product of Matrix Upper Half-Plane
Year 2024,
Volume: 14 Issue: 2, 36 - 45, 31.07.2024
Jonibek Sh. Abdullayev
Kudrat Sh. Ruzmetov
Zokirbek K. Matyakubov
Abstract
Carleman’s formulas solve the problem of recovery of a function from such
a class of its values on the set of uniqueness M ⊂ ∂D for this class that does not
contain the Shilov boundary ∂D. In this paper, by using the matrix upper half-plane
and the biholomorphic equivalence of the matrix unit disc, the Carleman formula for the
Cartesian product of matrix upper half-planes is proved
References
- [1] L.A. Aizenberg, Carleman formulas in complex analysis, Science, Novosibirsk, 1990
- [2] G.M. Goluzin, V.I. Krylov, Verallgemeinerung einer Formel von Carleman
und ihre Anwendung auf analytische Fortsetzung, Mat. Sb., 40(2), 1933,
144–149 (in Russian).
- [3] P. Kusis, Introduction to Hp Spaces with an Appendix on Wolff‘s Proof of
the Corona Theorem (Cambridge University Press, Cambridge-New York,
1980; Mir, Moscow, 1984).
- [4] A.M. Kytmanov, T.N. Nikitina, Multidimensional Carleman formulas in
Siegel domains, Izv. Vyssh. Uchebn. Zaved. Mat., 3, 1990, 44–49. (published
in Soviet Math. (Iz. VUZ) 34(3), 1990, 50–56.
- [5] M.M. Lavrent’ev, On the Cauchy problem for Laplace equation, Izv. Akad.
Nauk SSSR. Ser. Mat., 20, 1956, 819–842 (in Russian).
- [6] M.M. Lavrent’ev, V.G. Romanov, S.P. Shishatskii, Neorrektnye zadachi
matematicheskoi fiziki i analiza (III-Posed Problems in Mathematical
Physics and Analysis), Nauka, Moscow, 1980.
- [7] I.I. Privalov, Boundary Properties of Single-Valued Analytic Functions, Izd.
Moskov. Univ., Moscow, 1941 (in Russian).
- [8] L.K. Hua, Harmonic analysis of functions of several complex variables in
the classical domains, Translated from the Russian by Leo Ebner and Adam
Koranyi American Mathematical Society, Providence, R.I. 1963.
- [9] S. Kosbergenov, On the Carleman formula for a matrix ball, Izv. Vyssh.
Uchebn. Zaved. Mat., 1, 1999, 76–79; published in Russian Math. (Iz. VUZ)
43(1), 1999, 72–75.
- [10] G. Khudayberganov, A.M. Kytmanov, B.A. Shaimkulov, Complex analysis
in matrix domains, Monograph., Siberian Federal University, Krasnoyarsk,
2011 (in Russian).
- [11] G. Khudayberganov, A.M. Kytmanov, B.A. Shaimkulov, Analysis in matrix
domains, Siberian Federal University, Krasnoyarsk, 2017 (in Russian).
- [12] B.V. Shabat, Introduction to Complex Analysis. Part II. Functions of Several
Variables, Moscow: Nauka, Physical and mathematical literature, 1985 (in
Russian).
- [13] B.T. Kurbanov, Morera‘s Boundary Theorem in Siegel Domain of the First
Kind, Journal of Siberian Federal University. Mathematics & Physics, 15(2),
2022, 253–260.
- [14] B.A. Shoimkhulov, J.T. Bozorov, Carleman‘s Formula for a Matrix Polydisc,
Journal of Siberian Federal University. Mathematics & Physics, 8(2), 2015,
371–374.
- [15] T. Carleman, Les functions analytiques, Paris, 1926.
- [16] G. Khudayberganov, Z.K. Matyoqubov, Carleman‘s formula for the matrix
upper half-plane, ACTA NUUz., 2/1, 2018, 8-13.
- [17] G. Khudayberganov, Z.K. Matyakubov, Boundary version of Morera theorem for matrix ball of the second type, Journal of Siberian Federal University.
Mathematics & Physics, 7(4), 2014, 466-471.
- [18] G. Khudayberganov, U.S. Rakhmonov, Z.K. Matyakubov, Integral formulas
for some matrix domains, Contemporary Mathematics, 662, 2016, 89-95.
- [19] G. Khudayberganov, U.S. Rakhmonov, Carleman Formula for Matrix
Ball of the Third Type. In: Ibragimov, Z., Levenberg, N., Rozikov, U.,
Sadullaev, A. (eds) Algebra, Complex Analysis, and Pluripotential Theory.
USUZCAMP 2017. Springer Proceedings in Mathematics & Statistics, 264,
Springer, Cham., 2018.
- [20] U.S.Rakhmonov, Z.E.Matyakubov, Carleman‘s formula for the matrix domains of Siegel, Chebyshevskii Sbornik, XXIII(4) (85), 2022, 126-135.
- [21] L. Aizenberg, A. Tumanov, A. Vidras, The class of holomorphic functions
representable by Carleman formula, Ann. Scuola Norm. Sup. Pisa Cl. Sci.,
27(1), 1998, 93–105.
- [22] L. Aizenberg, A. Vidras, On Carleman formulas and on the class of holomorphic functions representable by them, Math. Nachr., 237, 2002, 5-25.
- [23] A. Vidras, On Holomorphic Functions in the Upper Half-Plane Representable
by Carleman Formula, Complex Anal. Oper. Theory, 14(66), 2020, 1-14.
- [24] G. Chailos, A. Vidras, On a Class of Holomorphic Functions Representable
by Carleman Formulas in Some Class of Bounded, Simply Connected Domains From Their Values on an Analytic Arc, Mh Math., 149, 2006, 289–
301.
- [25] L. Aizenberg, A. Vidras, On a class of holomorphic functions representable
by Carleman formulas in the disk from their values on the arc of the circle,
Math. Nachr., 280(1-2), 2007, 5–19.