Research Article
BibTex RIS Cite
Year 2024, Volume: 14 Issue: 2, 36 - 45, 31.07.2024

Abstract

References

  • [1] L.A. Aizenberg, Carleman formulas in complex analysis, Science, Novosibirsk, 1990
  • [2] G.M. Goluzin, V.I. Krylov, Verallgemeinerung einer Formel von Carleman und ihre Anwendung auf analytische Fortsetzung, Mat. Sb., 40(2), 1933, 144–149 (in Russian).
  • [3] P. Kusis, Introduction to Hp Spaces with an Appendix on Wolff‘s Proof of the Corona Theorem (Cambridge University Press, Cambridge-New York, 1980; Mir, Moscow, 1984).
  • [4] A.M. Kytmanov, T.N. Nikitina, Multidimensional Carleman formulas in Siegel domains, Izv. Vyssh. Uchebn. Zaved. Mat., 3, 1990, 44–49. (published in Soviet Math. (Iz. VUZ) 34(3), 1990, 50–56.
  • [5] M.M. Lavrent’ev, On the Cauchy problem for Laplace equation, Izv. Akad. Nauk SSSR. Ser. Mat., 20, 1956, 819–842 (in Russian).
  • [6] M.M. Lavrent’ev, V.G. Romanov, S.P. Shishatskii, Neorrektnye zadachi matematicheskoi fiziki i analiza (III-Posed Problems in Mathematical Physics and Analysis), Nauka, Moscow, 1980.
  • [7] I.I. Privalov, Boundary Properties of Single-Valued Analytic Functions, Izd. Moskov. Univ., Moscow, 1941 (in Russian).
  • [8] L.K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, Translated from the Russian by Leo Ebner and Adam Koranyi American Mathematical Society, Providence, R.I. 1963.
  • [9] S. Kosbergenov, On the Carleman formula for a matrix ball, Izv. Vyssh. Uchebn. Zaved. Mat., 1, 1999, 76–79; published in Russian Math. (Iz. VUZ) 43(1), 1999, 72–75.
  • [10] G. Khudayberganov, A.M. Kytmanov, B.A. Shaimkulov, Complex analysis in matrix domains, Monograph., Siberian Federal University, Krasnoyarsk, 2011 (in Russian).
  • [11] G. Khudayberganov, A.M. Kytmanov, B.A. Shaimkulov, Analysis in matrix domains, Siberian Federal University, Krasnoyarsk, 2017 (in Russian).
  • [12] B.V. Shabat, Introduction to Complex Analysis. Part II. Functions of Several Variables, Moscow: Nauka, Physical and mathematical literature, 1985 (in Russian).
  • [13] B.T. Kurbanov, Morera‘s Boundary Theorem in Siegel Domain of the First Kind, Journal of Siberian Federal University. Mathematics & Physics, 15(2), 2022, 253–260.
  • [14] B.A. Shoimkhulov, J.T. Bozorov, Carleman‘s Formula for a Matrix Polydisc, Journal of Siberian Federal University. Mathematics & Physics, 8(2), 2015, 371–374.
  • [15] T. Carleman, Les functions analytiques, Paris, 1926.
  • [16] G. Khudayberganov, Z.K. Matyoqubov, Carleman‘s formula for the matrix upper half-plane, ACTA NUUz., 2/1, 2018, 8-13.
  • [17] G. Khudayberganov, Z.K. Matyakubov, Boundary version of Morera theorem for matrix ball of the second type, Journal of Siberian Federal University. Mathematics & Physics, 7(4), 2014, 466-471.
  • [18] G. Khudayberganov, U.S. Rakhmonov, Z.K. Matyakubov, Integral formulas for some matrix domains, Contemporary Mathematics, 662, 2016, 89-95.
  • [19] G. Khudayberganov, U.S. Rakhmonov, Carleman Formula for Matrix Ball of the Third Type. In: Ibragimov, Z., Levenberg, N., Rozikov, U., Sadullaev, A. (eds) Algebra, Complex Analysis, and Pluripotential Theory. USUZCAMP 2017. Springer Proceedings in Mathematics & Statistics, 264, Springer, Cham., 2018.
  • [20] U.S.Rakhmonov, Z.E.Matyakubov, Carleman‘s formula for the matrix domains of Siegel, Chebyshevskii Sbornik, XXIII(4) (85), 2022, 126-135.
  • [21] L. Aizenberg, A. Tumanov, A. Vidras, The class of holomorphic functions representable by Carleman formula, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27(1), 1998, 93–105.
  • [22] L. Aizenberg, A. Vidras, On Carleman formulas and on the class of holomorphic functions representable by them, Math. Nachr., 237, 2002, 5-25.
  • [23] A. Vidras, On Holomorphic Functions in the Upper Half-Plane Representable by Carleman Formula, Complex Anal. Oper. Theory, 14(66), 2020, 1-14.
  • [24] G. Chailos, A. Vidras, On a Class of Holomorphic Functions Representable by Carleman Formulas in Some Class of Bounded, Simply Connected Domains From Their Values on an Analytic Arc, Mh Math., 149, 2006, 289– 301.
  • [25] L. Aizenberg, A. Vidras, On a class of holomorphic functions representable by Carleman formulas in the disk from their values on the arc of the circle, Math. Nachr., 280(1-2), 2007, 5–19.

Carleman’s Integral Formula in Cartesian Product of Matrix Upper Half-Plane

Year 2024, Volume: 14 Issue: 2, 36 - 45, 31.07.2024

Abstract

Carleman’s formulas solve the problem of recovery of a function from such
a class of its values on the set of uniqueness M ⊂ ∂D for this class that does not
contain the Shilov boundary ∂D. In this paper, by using the matrix upper half-plane
and the biholomorphic equivalence of the matrix unit disc, the Carleman formula for the
Cartesian product of matrix upper half-planes is proved

References

  • [1] L.A. Aizenberg, Carleman formulas in complex analysis, Science, Novosibirsk, 1990
  • [2] G.M. Goluzin, V.I. Krylov, Verallgemeinerung einer Formel von Carleman und ihre Anwendung auf analytische Fortsetzung, Mat. Sb., 40(2), 1933, 144–149 (in Russian).
  • [3] P. Kusis, Introduction to Hp Spaces with an Appendix on Wolff‘s Proof of the Corona Theorem (Cambridge University Press, Cambridge-New York, 1980; Mir, Moscow, 1984).
  • [4] A.M. Kytmanov, T.N. Nikitina, Multidimensional Carleman formulas in Siegel domains, Izv. Vyssh. Uchebn. Zaved. Mat., 3, 1990, 44–49. (published in Soviet Math. (Iz. VUZ) 34(3), 1990, 50–56.
  • [5] M.M. Lavrent’ev, On the Cauchy problem for Laplace equation, Izv. Akad. Nauk SSSR. Ser. Mat., 20, 1956, 819–842 (in Russian).
  • [6] M.M. Lavrent’ev, V.G. Romanov, S.P. Shishatskii, Neorrektnye zadachi matematicheskoi fiziki i analiza (III-Posed Problems in Mathematical Physics and Analysis), Nauka, Moscow, 1980.
  • [7] I.I. Privalov, Boundary Properties of Single-Valued Analytic Functions, Izd. Moskov. Univ., Moscow, 1941 (in Russian).
  • [8] L.K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, Translated from the Russian by Leo Ebner and Adam Koranyi American Mathematical Society, Providence, R.I. 1963.
  • [9] S. Kosbergenov, On the Carleman formula for a matrix ball, Izv. Vyssh. Uchebn. Zaved. Mat., 1, 1999, 76–79; published in Russian Math. (Iz. VUZ) 43(1), 1999, 72–75.
  • [10] G. Khudayberganov, A.M. Kytmanov, B.A. Shaimkulov, Complex analysis in matrix domains, Monograph., Siberian Federal University, Krasnoyarsk, 2011 (in Russian).
  • [11] G. Khudayberganov, A.M. Kytmanov, B.A. Shaimkulov, Analysis in matrix domains, Siberian Federal University, Krasnoyarsk, 2017 (in Russian).
  • [12] B.V. Shabat, Introduction to Complex Analysis. Part II. Functions of Several Variables, Moscow: Nauka, Physical and mathematical literature, 1985 (in Russian).
  • [13] B.T. Kurbanov, Morera‘s Boundary Theorem in Siegel Domain of the First Kind, Journal of Siberian Federal University. Mathematics & Physics, 15(2), 2022, 253–260.
  • [14] B.A. Shoimkhulov, J.T. Bozorov, Carleman‘s Formula for a Matrix Polydisc, Journal of Siberian Federal University. Mathematics & Physics, 8(2), 2015, 371–374.
  • [15] T. Carleman, Les functions analytiques, Paris, 1926.
  • [16] G. Khudayberganov, Z.K. Matyoqubov, Carleman‘s formula for the matrix upper half-plane, ACTA NUUz., 2/1, 2018, 8-13.
  • [17] G. Khudayberganov, Z.K. Matyakubov, Boundary version of Morera theorem for matrix ball of the second type, Journal of Siberian Federal University. Mathematics & Physics, 7(4), 2014, 466-471.
  • [18] G. Khudayberganov, U.S. Rakhmonov, Z.K. Matyakubov, Integral formulas for some matrix domains, Contemporary Mathematics, 662, 2016, 89-95.
  • [19] G. Khudayberganov, U.S. Rakhmonov, Carleman Formula for Matrix Ball of the Third Type. In: Ibragimov, Z., Levenberg, N., Rozikov, U., Sadullaev, A. (eds) Algebra, Complex Analysis, and Pluripotential Theory. USUZCAMP 2017. Springer Proceedings in Mathematics & Statistics, 264, Springer, Cham., 2018.
  • [20] U.S.Rakhmonov, Z.E.Matyakubov, Carleman‘s formula for the matrix domains of Siegel, Chebyshevskii Sbornik, XXIII(4) (85), 2022, 126-135.
  • [21] L. Aizenberg, A. Tumanov, A. Vidras, The class of holomorphic functions representable by Carleman formula, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27(1), 1998, 93–105.
  • [22] L. Aizenberg, A. Vidras, On Carleman formulas and on the class of holomorphic functions representable by them, Math. Nachr., 237, 2002, 5-25.
  • [23] A. Vidras, On Holomorphic Functions in the Upper Half-Plane Representable by Carleman Formula, Complex Anal. Oper. Theory, 14(66), 2020, 1-14.
  • [24] G. Chailos, A. Vidras, On a Class of Holomorphic Functions Representable by Carleman Formulas in Some Class of Bounded, Simply Connected Domains From Their Values on an Analytic Arc, Mh Math., 149, 2006, 289– 301.
  • [25] L. Aizenberg, A. Vidras, On a class of holomorphic functions representable by Carleman formulas in the disk from their values on the arc of the circle, Math. Nachr., 280(1-2), 2007, 5–19.
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematics Education, Science Education, Science and Mathematics Education (Other)
Journal Section Research Article
Authors

Jonibek Sh. Abdullayev This is me

Kudrat Sh. Ruzmetov This is me

Zokirbek K. Matyakubov This is me

Publication Date July 31, 2024
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA Sh. Abdullayev, J., Sh. Ruzmetov, K., & K. Matyakubov, Z. (2024). Carleman’s Integral Formula in Cartesian Product of Matrix Upper Half-Plane. Azerbaijan Journal of Mathematics, 14(2), 36-45.
AMA Sh. Abdullayev J, Sh. Ruzmetov K, K. Matyakubov Z. Carleman’s Integral Formula in Cartesian Product of Matrix Upper Half-Plane. AZJM. July 2024;14(2):36-45.
Chicago Sh. Abdullayev, Jonibek, Kudrat Sh. Ruzmetov, and Zokirbek K. Matyakubov. “Carleman’s Integral Formula in Cartesian Product of Matrix Upper Half-Plane”. Azerbaijan Journal of Mathematics 14, no. 2 (July 2024): 36-45.
EndNote Sh. Abdullayev J, Sh. Ruzmetov K, K. Matyakubov Z (July 1, 2024) Carleman’s Integral Formula in Cartesian Product of Matrix Upper Half-Plane. Azerbaijan Journal of Mathematics 14 2 36–45.
IEEE J. Sh. Abdullayev, K. Sh. Ruzmetov, and Z. K. Matyakubov, “Carleman’s Integral Formula in Cartesian Product of Matrix Upper Half-Plane”, AZJM, vol. 14, no. 2, pp. 36–45, 2024.
ISNAD Sh. Abdullayev, Jonibek et al. “Carleman’s Integral Formula in Cartesian Product of Matrix Upper Half-Plane”. Azerbaijan Journal of Mathematics 14/2 (July 2024), 36-45.
JAMA Sh. Abdullayev J, Sh. Ruzmetov K, K. Matyakubov Z. Carleman’s Integral Formula in Cartesian Product of Matrix Upper Half-Plane. AZJM. 2024;14:36–45.
MLA Sh. Abdullayev, Jonibek et al. “Carleman’s Integral Formula in Cartesian Product of Matrix Upper Half-Plane”. Azerbaijan Journal of Mathematics, vol. 14, no. 2, 2024, pp. 36-45.
Vancouver Sh. Abdullayev J, Sh. Ruzmetov K, K. Matyakubov Z. Carleman’s Integral Formula in Cartesian Product of Matrix Upper Half-Plane. AZJM. 2024;14(2):36-45.