Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 7 Sayı: 3, 276 - 285, 30.07.2019
https://doi.org/10.17694/bajece.557674

Öz

Kaynakça

  • [1] M. Blanke, M. Staroswiecki, N. E. Wu, “Concepts and methods in fault-tolerant control,” Proc. ACC, vol.4, pp. 2606-2620, June, 2001.
  • [2] A. L. Salih, M. Moghavvemi, H. A. Mohamed, K. S. Gaeid, “Flight PID controller design for a UAV quadrotor,” Scientific Research and Essays, vol. no. 23, pp.3660-3667, 2010.
  • [3] N. Hengameh, H. Kharrati, “PID controller design for unmanned aerial vehicle using genetic algorithm,” 23rd International Symposium on Industrial Electronics, pp.213-217, June, 2014.
  • [4] K. J. Astrom, T. Hagglund, “The future of PID control,” Control Engineering Practice, vol.9, no. 11, pp. 1163-1175, 2001.
  • [5] P. V. Osburn, H. P. Whitaker, A. Kezer, “Comparative studies of systems, Institute of Aeronautical Science, pp. 61–39, 1961.
  • [6] I. D. Landau I.D, Adaptive Control the Model Reference Approach. New York: Marcel Dekker, 1979.
  • [7] K. J. Astrom, B. Wittenmark, Adaptive Control. Massachusetts: Addison-Wesley, 1995.
  • [8] H. Butler, Model-Reference Adaptive Control-From Theory to Practice. New Jersey: Prentice-Hall, 1992.
  • [9] B. M. Vinagre, I. Petrás, I. Podlubny, Y. Q. Chen, “Using fractional order adjustment rules and fractional order reference models in model-reference adaptive control,” Nonlinear Dynamics, vol. 29, no. 1-4, pp.269-279, 2001.
  • [10] E. Lavretsky, Adaptive control: Introduction, overview, and applications. Adaptive Control Workshop, NASA Marshall Space Center, USA, 2009.
  • [11] T.A.V. Ravi, C. Chakraborty, S. Maiti, Y. Hori, “A new model reference adaptive controller for four quadrant vector controlled induction motor drives,” IEEE Transactions on Industrial Electronics, vol. 59, no. 10, pp. 3757-3767, 2012.
  • [12] M.D. Bernardo, U. Montanaro, J.M. Olm S. Santini, “Model reference adaptive control of discrete time piecewise linear systems,” International Journal of Robust and Nonlinear Control, vol. 23i no. 7, pp. 709-730, 2013.
  • [13] B. Jiang, Z. Gao, P. Shi, Y. Xu, “Adaptive fault-tolerant tracking control of near-space vehicle using Takagi–Sugeno fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 1000-1007, 2010.
  • [14] I. Sadeghzadeh, A. Mehta, Y. Zhang, C. Rabbath, “Fault-tolerant trajectory tracking control of a quadrotor helicopter using gain-scheduled PID and model reference adaptive control,” Annual Conference of the Prognostics and Health Management Society, Montreal, Canada, pp.1-10, 2011.
  • [15] BB. Alagoz, A. Ates, C. Yeroglu, “Auto-tuning of PID controller according to fractional-order reference model approximation for DC rotor control,” Mechatronics, vol. 23, no. 7, pp. 789-797, 2013.
  • [16] A. Znidi, K. Dehri, A. S. Nouri, “Discrete variable structure model reference adaptive control using only input-output measurements,” Transactions of the Institute of Measurement and Control, vol.40, no. 3, pp. 861-872., 2018.
  • [17] B. Sinafar, A. R. Ghiasi, A. K. Fazli, “A new model reference adaptive control structure for uncertain switched systems with unmodeled input dynamics,” Transactions of the Institute of Measurement and Control, vol. 37, no. 10, pp. 1171-1180, 2015.
  • [18] R. D. Tehrani, F. Shabaninia, “Two-level control of photovoltaic systems using global perturbation-based extremum seeking control and model reference adaptive control,” Transactions of the Institute of Measurement and Control, vol. 40, no. 13, pp. 3709-3720.
  • [19] P. Sarhadi, A. R. Noei, A. Khosravi, “Model reference adaptive PID control with anti-windup compensator for an autonomous underwater vehicle,” Robotics and Autonomous Systems, vol.83, pp. 87–93, 2016.
  • [20] W. Su, “A model reference-based adaptive PID controller for robot motion control of not explicitly known systems,” International Journal of Intelligent Control and Systems, vol. 12, pp.237-244, 2007.
  • [21] Xiao S., Li Y. and Liu J.: A model reference adaptive PID control for electromagnetic actuated micro-positioning stage. 8th IEEE International Conference on Automation Science and Engineering, Seoul, Korea, pp. 97-102., 2012.
  • [22] B. Singh, V. Kumar, “A real time application of model reference adaptive PID controller for magnetic levitation system,” Power, Communication and Information Technology Conference, Bhubaneswar, India, pp.1-8., 2016.
  • [23] H. Noura, D. Theilliol, J. C. Ponsart, A. Chamseddine, Fault-tolerant Control Systems Design and Practical Applications. London: Springer-Verlag, 2009.
  • [24] G. J. J. Ducard, Fault-tolerant flight control and guidance systems practical methods for small unmanned aerial vehicles. London: Springer-Verlag, 2009.
  • [25] S. Ding, Y. Yuan, N. Xue, X. Liu, “Online fault-tolerant onboard aeroengine model tuning structure,” International Journal of Aerospace Engineering, pp.1-16, 2016.
  • [26] W. M. Wonham, A control theory for discrete event system, advanced computing concepts and techniques in control engineering. Berlin: Springer-Verlag, pp.129-169., 1988.
  • [27] K. Wang, J. Chen, Z. Song, “Data-driven sensor fault diagnosis systems for linear feedback control loops,” Journal of Process Control, vol.54, pp. 152-171, 2017.
  • [28] B. B. Alagoz, E. Petlenkov, C. Yeroglu, “Multi-loop model reference adaptive control of fractional-order PID control systems,” 40th TSP, Barcelona, pp.702-705, July, 2017.
  • [29] A. Tepljakov, B. B. Alagoz, E. Gonzalez, E. Petlenkov, C. Yeroglu, “Model reference adaptive control scheme for retuning method-based fractional-order PID control with disturbance rejection applied to closed-loop control of a magnetic levitation system,” Journal of Circuits Systems and Computers, vol.27, no.11, 2018.
  • [30] R. O. T. Kroger, B. Finkemeyer, F. M. Wahl, “A two-loop implicit force/position control structure, based on a simple linear model: theory and experiment,” International Conference on Robotics and Automation, pp. 2232-2237, May, 2006.
  • [31] N. Penkov, “A new Approach for Adaptive Tuning of PI Controllers,” Application in Cascade Systems, Information Technologies and Control, vol. 6, no.1 pp. 19-26, 2008.
  • [32] A. S. Alekseev, S. V. Zamyatin, V. A. Rudnicki, “Multi-loop control system design,” Bulletin Of The Polish Academy Of Sciences, Technical Sciences,vol. 60: 627-630, 2012.

Multi-loop Model Reference Adaptive PID Control for Fault-Tolerance

Yıl 2019, Cilt: 7 Sayı: 3, 276 - 285, 30.07.2019
https://doi.org/10.17694/bajece.557674

Öz

This study demonstrates application of multi-loop model reference adaptive control (MRAC) structure to enhance fault tolerance performance of closed-loop PID control systems. The proposed multi-loop MRAC-PID structure can transform a conventional PID control system to an adaptive control system by combining an outer adaptation loop that employs MIT rule. This control structure can be used to improvement of fault tolerance and fault detection performance of the existing closed-loop PID control systems. One of the advantages of this structure originates from the reference input shaping technique that allows adaptive control without modifying any coefficients of the existing PID controllers. Numerical and experimental studies are presented to illustrate the application of the multi-loop MRAC-PID control structure for rotor control applications.

Kaynakça

  • [1] M. Blanke, M. Staroswiecki, N. E. Wu, “Concepts and methods in fault-tolerant control,” Proc. ACC, vol.4, pp. 2606-2620, June, 2001.
  • [2] A. L. Salih, M. Moghavvemi, H. A. Mohamed, K. S. Gaeid, “Flight PID controller design for a UAV quadrotor,” Scientific Research and Essays, vol. no. 23, pp.3660-3667, 2010.
  • [3] N. Hengameh, H. Kharrati, “PID controller design for unmanned aerial vehicle using genetic algorithm,” 23rd International Symposium on Industrial Electronics, pp.213-217, June, 2014.
  • [4] K. J. Astrom, T. Hagglund, “The future of PID control,” Control Engineering Practice, vol.9, no. 11, pp. 1163-1175, 2001.
  • [5] P. V. Osburn, H. P. Whitaker, A. Kezer, “Comparative studies of systems, Institute of Aeronautical Science, pp. 61–39, 1961.
  • [6] I. D. Landau I.D, Adaptive Control the Model Reference Approach. New York: Marcel Dekker, 1979.
  • [7] K. J. Astrom, B. Wittenmark, Adaptive Control. Massachusetts: Addison-Wesley, 1995.
  • [8] H. Butler, Model-Reference Adaptive Control-From Theory to Practice. New Jersey: Prentice-Hall, 1992.
  • [9] B. M. Vinagre, I. Petrás, I. Podlubny, Y. Q. Chen, “Using fractional order adjustment rules and fractional order reference models in model-reference adaptive control,” Nonlinear Dynamics, vol. 29, no. 1-4, pp.269-279, 2001.
  • [10] E. Lavretsky, Adaptive control: Introduction, overview, and applications. Adaptive Control Workshop, NASA Marshall Space Center, USA, 2009.
  • [11] T.A.V. Ravi, C. Chakraborty, S. Maiti, Y. Hori, “A new model reference adaptive controller for four quadrant vector controlled induction motor drives,” IEEE Transactions on Industrial Electronics, vol. 59, no. 10, pp. 3757-3767, 2012.
  • [12] M.D. Bernardo, U. Montanaro, J.M. Olm S. Santini, “Model reference adaptive control of discrete time piecewise linear systems,” International Journal of Robust and Nonlinear Control, vol. 23i no. 7, pp. 709-730, 2013.
  • [13] B. Jiang, Z. Gao, P. Shi, Y. Xu, “Adaptive fault-tolerant tracking control of near-space vehicle using Takagi–Sugeno fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 1000-1007, 2010.
  • [14] I. Sadeghzadeh, A. Mehta, Y. Zhang, C. Rabbath, “Fault-tolerant trajectory tracking control of a quadrotor helicopter using gain-scheduled PID and model reference adaptive control,” Annual Conference of the Prognostics and Health Management Society, Montreal, Canada, pp.1-10, 2011.
  • [15] BB. Alagoz, A. Ates, C. Yeroglu, “Auto-tuning of PID controller according to fractional-order reference model approximation for DC rotor control,” Mechatronics, vol. 23, no. 7, pp. 789-797, 2013.
  • [16] A. Znidi, K. Dehri, A. S. Nouri, “Discrete variable structure model reference adaptive control using only input-output measurements,” Transactions of the Institute of Measurement and Control, vol.40, no. 3, pp. 861-872., 2018.
  • [17] B. Sinafar, A. R. Ghiasi, A. K. Fazli, “A new model reference adaptive control structure for uncertain switched systems with unmodeled input dynamics,” Transactions of the Institute of Measurement and Control, vol. 37, no. 10, pp. 1171-1180, 2015.
  • [18] R. D. Tehrani, F. Shabaninia, “Two-level control of photovoltaic systems using global perturbation-based extremum seeking control and model reference adaptive control,” Transactions of the Institute of Measurement and Control, vol. 40, no. 13, pp. 3709-3720.
  • [19] P. Sarhadi, A. R. Noei, A. Khosravi, “Model reference adaptive PID control with anti-windup compensator for an autonomous underwater vehicle,” Robotics and Autonomous Systems, vol.83, pp. 87–93, 2016.
  • [20] W. Su, “A model reference-based adaptive PID controller for robot motion control of not explicitly known systems,” International Journal of Intelligent Control and Systems, vol. 12, pp.237-244, 2007.
  • [21] Xiao S., Li Y. and Liu J.: A model reference adaptive PID control for electromagnetic actuated micro-positioning stage. 8th IEEE International Conference on Automation Science and Engineering, Seoul, Korea, pp. 97-102., 2012.
  • [22] B. Singh, V. Kumar, “A real time application of model reference adaptive PID controller for magnetic levitation system,” Power, Communication and Information Technology Conference, Bhubaneswar, India, pp.1-8., 2016.
  • [23] H. Noura, D. Theilliol, J. C. Ponsart, A. Chamseddine, Fault-tolerant Control Systems Design and Practical Applications. London: Springer-Verlag, 2009.
  • [24] G. J. J. Ducard, Fault-tolerant flight control and guidance systems practical methods for small unmanned aerial vehicles. London: Springer-Verlag, 2009.
  • [25] S. Ding, Y. Yuan, N. Xue, X. Liu, “Online fault-tolerant onboard aeroengine model tuning structure,” International Journal of Aerospace Engineering, pp.1-16, 2016.
  • [26] W. M. Wonham, A control theory for discrete event system, advanced computing concepts and techniques in control engineering. Berlin: Springer-Verlag, pp.129-169., 1988.
  • [27] K. Wang, J. Chen, Z. Song, “Data-driven sensor fault diagnosis systems for linear feedback control loops,” Journal of Process Control, vol.54, pp. 152-171, 2017.
  • [28] B. B. Alagoz, E. Petlenkov, C. Yeroglu, “Multi-loop model reference adaptive control of fractional-order PID control systems,” 40th TSP, Barcelona, pp.702-705, July, 2017.
  • [29] A. Tepljakov, B. B. Alagoz, E. Gonzalez, E. Petlenkov, C. Yeroglu, “Model reference adaptive control scheme for retuning method-based fractional-order PID control with disturbance rejection applied to closed-loop control of a magnetic levitation system,” Journal of Circuits Systems and Computers, vol.27, no.11, 2018.
  • [30] R. O. T. Kroger, B. Finkemeyer, F. M. Wahl, “A two-loop implicit force/position control structure, based on a simple linear model: theory and experiment,” International Conference on Robotics and Automation, pp. 2232-2237, May, 2006.
  • [31] N. Penkov, “A new Approach for Adaptive Tuning of PI Controllers,” Application in Cascade Systems, Information Technologies and Control, vol. 6, no.1 pp. 19-26, 2008.
  • [32] A. S. Alekseev, S. V. Zamyatin, V. A. Rudnicki, “Multi-loop control system design,” Bulletin Of The Polish Academy Of Sciences, Technical Sciences,vol. 60: 627-630, 2012.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Barış Baykant Alagöz 0000-0001-5238-6433

Gürkan Kavuran 0000-0003-2651-5005

Abdullah Ateş 0000-0002-4236-6794

Celaleddin Yeroğlu 0000-0002-6106-2374

Hafız Alisoy 0000-0002-9695-5594

Yayımlanma Tarihi 30 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 3

Kaynak Göster

APA Alagöz, B. B., Kavuran, G., Ateş, A., Yeroğlu, C., vd. (2019). Multi-loop Model Reference Adaptive PID Control for Fault-Tolerance. Balkan Journal of Electrical and Computer Engineering, 7(3), 276-285. https://doi.org/10.17694/bajece.557674

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı