Nowadays, people need easy access to basic nutrients to live a healthy life. In addition to providing calories that can meet the physiological needs of human beings, maize, which is one of the basic foods, contains valuable minerals and vitamins such as vitamin B6, sodium, magnesium, zinc, potassium, calcium, vitamin A. As a result of the increase in the world population in the world and our country, the need for maize is increasing day by day. Herein, it is important to detect the diseases seen in maize leaves that reduce the efficiency of maize production. Thanks to the developing technologies, producers should be encouraged by using technological opportunities in maize cultivation. In the study, it is aimed to detect maize rust, gray leaf spot, and leaf blight on maize leaves. In addition, two models based on the EfficientNetB5 network and convolutional neural network have been developed to detect diseases found in maize leaves using deep learning methods. To increase the performance metrics of created models, the number of images has been increased by using data augmentation techniques (mirror, rotation, scale). From the results, it is seen that the prediction success rates obtained in the EfficientNetB5 transfer learning model and the developed deep learning model are equal to 92.12% and 89.88%, respectively.
Deep learning image processing convolutional neural network (CNN) maize leaf diseases EfficientNetB
Günümüzde insanların sağlıklı yaşayabilmeleri için temel besinlere kolayca erişebilmeleri gerekmektedir. Temel besinlerden olan mısırda insanoğlunun fizyolojik ihtiyaçlarını karşılayabilecek kalorinin sağlanması yanında mısırda yer alan B6 vitamini, sodyum, magnezyum, çinko, potasyum, kalsiyum, A vitamini gibi değerli mineraller ve vitaminler bulunmaktadır. Dünya’da ve ülkemizde dünya nüfusunun artmasıyla, mısıra olan ihtiyaç gün geçtikçe artmaktadır. Bu noktada, mısır üretiminin verimliliğini düşüren mısır yapraklarında görülen hastalıkların tespiti önemlidir. Gelişen teknolojiler sayesinde mısır yetiştiriciliğinde teknolojik imkânlar kullanılarak üreticilerin teşvik edilmesi gerekmektedir. Bu çalışma sayesinde, mısır yapraklarında görülen mısır pası, gri yaprak lekesi ve yaprak yanığı tespitinin gerçekleştirilmesi amaçlanmıştır. Ayrıca, derin öğrenme yöntemleri kullanılarak mısır yapraklarında görülen hastalıkların tespit edilebilmesi için EfficientNetB5 ağı ve evrişimsel sinir ağları tabanlı iki adet model geliştirilmiştir. Oluşturulan modellerin performans metriklerini arttırabilmek için, görüntülerin sayısı veri çoğaltma teknikleri kullanılarak (aynalama, döndürme, büyültme) arttırılmıştır. Sonuçlardan, EfficientNetB5 transfer öğrenmesi modeli ve geliştirilen derin öğrenme modelinde elde edilen tahmin başarı oranlarının sırasıyla %92.12 ve %89.88’e eşit olduğu görülmektedir.
Derin öğrenme görüntü işleme evrişimli sinir ağları (ESA) mısır yaprağı hastalıkları EfficientNetB5
Birincil Dil | Türkçe |
---|---|
Konular | Yapay Zeka |
Bölüm | PAPERS |
Yazarlar | |
Yayımlanma Tarihi | 20 Ekim 2021 |
Gönderilme Tarihi | 31 Ağustos 2021 |
Kabul Tarihi | 16 Eylül 2021 |
Yayımlandığı Sayı | Yıl 2021 Cilt: IDAP-2021 : 5th International Artificial Intelligence and Data Processing symposium Sayı: Special |
The Creative Commons Attribution 4.0 International License is applied to all research papers published by JCS and
A Digital Object Identifier (DOI) is assigned for each published paper.