BibTex RIS Kaynak Göster

$p$-Summable Sequence Spaces with Inner Products

Yıl 2015, , 37 - 41, 22.06.2015
https://doi.org/10.17678/beujst.06700

Öz

We revisit the space $\ell^p$ of $p$-summable sequences of real
numbers. In particular, we show that this space is actually
contained in a (weighted) inner product space. The relationship
between $\ell^p$ and the (weighted) inner product space that
contains $\ell^p$ is studied. For $p>2$, we also obtain a result
which describe how the weighted inner product space is associated
to the weights.

Kaynakça

  • Berberian SK (1961). Introduction to Hilbert Space. Oxford University Press, New York. 1
  • Gunawan H, Setya-Budhi W, Mashadi, Gemawati S (2005). On volumes of n -dimensional parallelepipeds on p spaces. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 16, 48-54. 2
  • Hilbert D (1912). Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. New York, Chelsea. 3
  • Idris M, Ekariani S, Gunawan H (2013). On the space of p - summable sequences. Matematiqki Vesnik, 65 No 1, 58- 63.
  • Kreyszig E (1978). Introductory Functional Analysis with Applications. New York, John Wiley & Sons. 5
  • Miličić PM (1987). Une généralisation naturelle du produit scaleaire dans un espace normé et son utilisation. Univerzitet u Beogradu. Publ. Inst. Math. (Beograd), 42 No 56, 63-70. 6
Yıl 2015, , 37 - 41, 22.06.2015
https://doi.org/10.17678/beujst.06700

Öz

Kaynakça

  • Berberian SK (1961). Introduction to Hilbert Space. Oxford University Press, New York. 1
  • Gunawan H, Setya-Budhi W, Mashadi, Gemawati S (2005). On volumes of n -dimensional parallelepipeds on p spaces. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 16, 48-54. 2
  • Hilbert D (1912). Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. New York, Chelsea. 3
  • Idris M, Ekariani S, Gunawan H (2013). On the space of p - summable sequences. Matematiqki Vesnik, 65 No 1, 58- 63.
  • Kreyszig E (1978). Introductory Functional Analysis with Applications. New York, John Wiley & Sons. 5
  • Miličić PM (1987). Une généralisation naturelle du produit scaleaire dans un espace normé et son utilisation. Univerzitet u Beogradu. Publ. Inst. Math. (Beograd), 42 No 56, 63-70. 6
Toplam 6 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Şükran Konca

Mochammad Idris Bu kişi benim

Hendra Gunawan Bu kişi benim

Yayımlanma Tarihi 22 Haziran 2015
Gönderilme Tarihi 22 Haziran 2015
Yayımlandığı Sayı Yıl 2015

Kaynak Göster

IEEE Ş. Konca, M. Idris, ve H. Gunawan, “$p$-Summable Sequence Spaces with Inner Products”, Bitlis Eren University Journal of Science and Technology, c. 5, sy. 1, ss. 37–41, 2015, doi: 10.17678/beujst.06700.