Let $\left( {X,\left\| {.,...,.} \right\|} \right)$ be a real
$n$-normed space, as introduced by S. Gahler [1] in 1969. The set
of all bounded multilinear $n$-functionals on $\left( {X,\left\|
{.,...,.} \right\|} \right)$ forms a vector space. A bounded
multilinear $n$-functional $F$ is defined by $\left\| F
\right\|: = {\rm{sup}}\left\{ {\left| {F\left( {{x_1},...,{x_n}}
\right)} \right|:\left\| {{x_1},...,{x_n}} \right\| \le 1}
\right\}$. \textbf{\bigskip }
This formula defines a norm on $X'$ (the space of all bounded multilinear $n$-functionals on $X$). \textbf{\bigskip }
Let $Y: = \left\{
{{y_1},...,{y_n}} \right\}$ in $\ell^{q}$, where $q$ is the dual
exponent of $p$. \textbf{\bigskip }
Batkunde et al. [2] defined the following multilinear
$n$-functional on $\ell^{p}$ where $1 \le p < \infty$:
\begin{equation*}
{F_Y}\left( {{x_1},...,{x_n}} \right): =
\frac{1}{{n!}}\sum\limits_{{j_1}} {...} \sum\limits_{{j_n}}
{\left| {\begin{array}{*{20}{c}}
{{x_{1{j_1}}}} & \cdots & {{x_{1{j_n}}}} \\
\vdots & \ddots & \vdots \\
{{x_{n{j_1}}}} & \ldots & {{x_{n{j_n}}}} \\
\end{array}} \right|} \left| {\begin{array}{*{20}{c}}
{{y_{1{j_1}}}} & \cdots & {{y_{1{j_n}}}} \\
\vdots & \ddots & \vdots \\
{{y_{n{j_1}}}} & \ldots & {{y_{n{j_n}}}} \\
\end{array}} \right|
\end{equation*}
for ${x_1},...,{x_n} \in \ell^{p}$.\textbf{\bigskip }
Regarding the $n$-functional on $\left( {\ell^{p},\left\| {.,...,.}
\right\|_p^{}} \right)$, an open problem was given by Batkunde et al. [2]. They
want to compute the exact norm of ${F_Y}$, especially for $p \ne
2$. In this paper, we deal with a partial solution to this open
problem given in their paper.
Bölüm | Makaleler |
---|---|
Yazarlar | |
Yayımlanma Tarihi | 28 Aralık 2015 |
Gönderilme Tarihi | 25 Ekim 2015 |
Yayımlandığı Sayı | Yıl 2015 Cilt: 5 Sayı: 2 |