BibTex RIS Kaynak Göster

Influence of surface kind on biofilm formation by Salmonella spp. and Listeria monocytogenes from food-contact surfaces

Yıl 2017, Cilt: 10 Sayı: 1, 124 - 132, 15.04.2017

Öz

Salmonella spp. and Listeria monocytogenes are important pathogenic bacteria, which are transmitted by food. It is known that both microorganisms may produce biofilm on biotic or abiotic surfaces. Bacteria in biofilms exhibit enhanced resistance to cleaning and sanitation. In this study, we investigated the biofilm producing ability of 8 Salmonella spp. and 6 L. monocytogenes isolates by microtiter plate and tube adherence method. All tested Salmonella spp. and L. monocytogenes strains produced biofilm but strains of L. monocytogenes exhibited a higher ability of biofilm formation. Concominantly with these two methods, adhesion and biofilm formation of selected strains to six different industrial surface was also assessed by scanning electron microscope SEM . In addition, biofilm formation and development of selected two strains were also evaluated on granite surfaces and at five incubation periods 2th, 4th, 6th, 24th and 48th hours . Mature biofilm formation was determined after 24 and 48 hours. Granite, marble, wood and glass surfaces presented higher intensity of biofilm, compared to the steel and plastic surfaces. Especially granite and marble are the surfaces in which we found to be the most convenient for the biofilm formation

Kaynakça

  • Adetunji, V. O., and Isola, T. O. (2011). Crystal violet binding assay for assessment of biofilm formation by Listeria monocytogenes and Listeria spp. on wood, steel and glass surfaces. Global Veterinaria, 6(1), 6-10.
  • Borucki, M. K., Peppin, J. D., White, D., Loge, F., and Call, D. R. (2003). Variation in biofilm formation among strains of Listeria monocytogenes. Applied and Environmental Microbiology, 69(12), 7336-7342.
  • Botticella G., Russo P., Capozzi V., Amodio M.L., Massa S., Spano G., Beneduce, L. (2013). Listeria monocytogenes, biofilm formation and fresh cut produce. Microbial pathogens and strategies for combating them: Science, technology and education. FORMATEX, 1, 114-123.
  • Chae, M. S., and Schraft, H. (2000). Comparative evaluation of adhesion and biofilm formation of different Listeria monocytogenes strains. International journal of food microbiology, 62(1), 103-111.
  • Characklis, W. G. (1990). Biofilm processes. Biofilms, 195-231
  • Christensen, G. D., Simpson, W. A., Bisno, A. L., and Beachey, E. H. (1982). Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infection and Immunity, 37(1), 318-326.
  • Costerton, J. W. (1995). Overview of microbial biofilms. Journal of industrial microbiology, 15(3), 137-140.
  • Dag, I., Acar, M., Sakallioglu, O., Catli, T., San, T., and Cingi, C. (2014). Influence of surface properties of Merocel®(polyvinyl acetal) and silicone nasal splints on biofilm formation. European Archives of Oto-Rhino- Laryngology, 271(6), 1519-1524.
  • Davey, M. E., and O'toole, G. A. (2000). Microbial biofilms: from ecology to molecular genetics. Microbiology and molecular biology reviews, 64(4), 847-867.
  • Di Bonaventura, G., Piccolomini, R., Paludi, D., D’orio, V., Vergara, A., Conter, M., and Ianieri, A. (2008). Influence of temperature on biofilm formation by Listeria monocytogenes on various food‐contact surfaces: relationship with motility and cell surface hydrophobicity. Journal of applied microbiology, 104(6), 1552-1561.
  • Di Ciccio, P., Vergara, A., Festino, A. R., Paludi, D., Zanardi, E., Ghidini, S., and Ianieri, A. (2015). Biofilm formation by Staphylococcus aureus on food contact surfaces: Relationship with temperature and cell surface hydrophobicity. Food Control, 50, 930-936.
  • Donlan, R. M. (2002). Biofilms: microbial life on surfaces. Emerg Infect Dis,8(9).
  • Hood, S. K., and Zottola, E. A. (1997). Adherence to stainless steel by foodborne microorganisms during growth in model food systems. International journal of food microbiology, 37(2), 145-153.
  • Howell, D., and Behrends, B. (2006). A review of surface roughness in antifouling coatings illustrating the importance of cutoff length. Biofouling, 22(6), 401-410.
  • Leonhard M., Zatorska B., Moser D., Bertl K., Bigenzahn W., Schneider-Stickler B. (2014). Impact of surface roughness on long-term candida biofilm colonization of prosthetic silicone: A pilot study. Hard Tissue 2014, 22(1):6.
  • Oliveira, M. M. M. D., Brugnera, D. F., Alves, E., and Piccoli, R. H. (2010). Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential. Brazilian Journal of Microbiology, 41(1), 97- 106.
  • Silva, S., Teixeira, P., Oliveira, R., and Azeredo, J. (2008). Adhesion to and viability of Listeria monocytogenes on food contact surfaces. Journal of Food Protection®, 71(7), 1379-1385.
  • Simoes, M., Simões, L. C., and Vieira, M. J. (2010). A review of current and emergent biofilm control strategies. LWT- Food Science and Technology, 43(4), 573-583.
  • Srey, S., Jahid, I. K., and Ha, S. D. (2013). Biofilm formation in food industries: a food safety concern. Food Control, 31(2), 572-585.
  • Stepanović, S., Ćirković, I., and Ranin, L. (2004). Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Letters in applied microbiology, 38(5), 428-432.
  • Stepanović, S., Vuković, D., Dakić, I., Savić, B., and Švabić-Vlahović, M. (2000). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of microbiological methods, 40(2), 175-179.
  • Van Houdt, R., and Michiels, C. W. (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of applied microbiology, 109(4), 1117-1131.
  • Wong, A. C. L. (1998). Biofilms in food processing environments. Journal of dairy science, 81(10), 2765-2770.

Besin temas yüzeylerinden elde edilen Salmonella spp. ve Listeria monocytogenes izolatlarının biyofilm oluşumu üzerine yüzey çeşidinin etkisi

Yıl 2017, Cilt: 10 Sayı: 1, 124 - 132, 15.04.2017

Öz

Salmonella spp. ve Listeria monocytogenes besin yoluyla taşınan önemli patojenik bakterilerdendir. Her iki mikroorganizmanın da canlı ve cansız yüzeyler üzerinde biyofilm oluşturabildikleri bilinmektedir. Biyofilmde bulunan bakteriler temizleme ve sanitasyon işlemlerine artan bir direnç gösterirler. Biz bu çalışmada 8 Salmonella spp. ve 6 Listeria monocytogenes izolatının biyofilm oluşturma yeteneğini mikrotitre plaka ve tüp aderans metodlarıyla araştırdık. Test edilen tüm Salmonella spp. ve L. monocytogenes izolatları biyofilm oluşturmuş ancak L. monocytogenes daha yüksek derecede biyofilm oluşumu göstermiştir. Bu iki teste ilave olarak seçilen izolatların altı farklı endüstriyel yüzey üzerindeki adezyon ve biyofilm oluşumları da taramalı elektron mikroskopla tayin edilmiştir SEM . Ayrıca seçilen iki izolatın biyofilm oluşum ve gelişimleri granit yüzeyler üzerinde ve beş farklı inkübasyon periyodunda değerlendirilmiştir 2., 4., 6., 24. ve 48. saatler . Olgun biyofilm oluşumu 24. ve 48. saatler sonrasında tespit edilmiştir. Granit, mermer, tahta ve cam yüzeyler, çelik ve plastik yüzeylere kıyasla daha yoğun biyofilm oluşturmuşlardır. Özellikle granit ve mermer biyofilm oluşumu için daha elverişli yüzeyler olarak bulunmuştur

Kaynakça

  • Adetunji, V. O., and Isola, T. O. (2011). Crystal violet binding assay for assessment of biofilm formation by Listeria monocytogenes and Listeria spp. on wood, steel and glass surfaces. Global Veterinaria, 6(1), 6-10.
  • Borucki, M. K., Peppin, J. D., White, D., Loge, F., and Call, D. R. (2003). Variation in biofilm formation among strains of Listeria monocytogenes. Applied and Environmental Microbiology, 69(12), 7336-7342.
  • Botticella G., Russo P., Capozzi V., Amodio M.L., Massa S., Spano G., Beneduce, L. (2013). Listeria monocytogenes, biofilm formation and fresh cut produce. Microbial pathogens and strategies for combating them: Science, technology and education. FORMATEX, 1, 114-123.
  • Chae, M. S., and Schraft, H. (2000). Comparative evaluation of adhesion and biofilm formation of different Listeria monocytogenes strains. International journal of food microbiology, 62(1), 103-111.
  • Characklis, W. G. (1990). Biofilm processes. Biofilms, 195-231
  • Christensen, G. D., Simpson, W. A., Bisno, A. L., and Beachey, E. H. (1982). Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infection and Immunity, 37(1), 318-326.
  • Costerton, J. W. (1995). Overview of microbial biofilms. Journal of industrial microbiology, 15(3), 137-140.
  • Dag, I., Acar, M., Sakallioglu, O., Catli, T., San, T., and Cingi, C. (2014). Influence of surface properties of Merocel®(polyvinyl acetal) and silicone nasal splints on biofilm formation. European Archives of Oto-Rhino- Laryngology, 271(6), 1519-1524.
  • Davey, M. E., and O'toole, G. A. (2000). Microbial biofilms: from ecology to molecular genetics. Microbiology and molecular biology reviews, 64(4), 847-867.
  • Di Bonaventura, G., Piccolomini, R., Paludi, D., D’orio, V., Vergara, A., Conter, M., and Ianieri, A. (2008). Influence of temperature on biofilm formation by Listeria monocytogenes on various food‐contact surfaces: relationship with motility and cell surface hydrophobicity. Journal of applied microbiology, 104(6), 1552-1561.
  • Di Ciccio, P., Vergara, A., Festino, A. R., Paludi, D., Zanardi, E., Ghidini, S., and Ianieri, A. (2015). Biofilm formation by Staphylococcus aureus on food contact surfaces: Relationship with temperature and cell surface hydrophobicity. Food Control, 50, 930-936.
  • Donlan, R. M. (2002). Biofilms: microbial life on surfaces. Emerg Infect Dis,8(9).
  • Hood, S. K., and Zottola, E. A. (1997). Adherence to stainless steel by foodborne microorganisms during growth in model food systems. International journal of food microbiology, 37(2), 145-153.
  • Howell, D., and Behrends, B. (2006). A review of surface roughness in antifouling coatings illustrating the importance of cutoff length. Biofouling, 22(6), 401-410.
  • Leonhard M., Zatorska B., Moser D., Bertl K., Bigenzahn W., Schneider-Stickler B. (2014). Impact of surface roughness on long-term candida biofilm colonization of prosthetic silicone: A pilot study. Hard Tissue 2014, 22(1):6.
  • Oliveira, M. M. M. D., Brugnera, D. F., Alves, E., and Piccoli, R. H. (2010). Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential. Brazilian Journal of Microbiology, 41(1), 97- 106.
  • Silva, S., Teixeira, P., Oliveira, R., and Azeredo, J. (2008). Adhesion to and viability of Listeria monocytogenes on food contact surfaces. Journal of Food Protection®, 71(7), 1379-1385.
  • Simoes, M., Simões, L. C., and Vieira, M. J. (2010). A review of current and emergent biofilm control strategies. LWT- Food Science and Technology, 43(4), 573-583.
  • Srey, S., Jahid, I. K., and Ha, S. D. (2013). Biofilm formation in food industries: a food safety concern. Food Control, 31(2), 572-585.
  • Stepanović, S., Ćirković, I., and Ranin, L. (2004). Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Letters in applied microbiology, 38(5), 428-432.
  • Stepanović, S., Vuković, D., Dakić, I., Savić, B., and Švabić-Vlahović, M. (2000). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of microbiological methods, 40(2), 175-179.
  • Van Houdt, R., and Michiels, C. W. (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of applied microbiology, 109(4), 1117-1131.
  • Wong, A. C. L. (1998). Biofilms in food processing environments. Journal of dairy science, 81(10), 2765-2770.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Bükay Yenice Gürsu Bu kişi benim

İlknur Dağ Bu kişi benim

Şeref İset Bu kişi benim

Gökhan Dıkmen Bu kişi benim

Yayımlanma Tarihi 15 Nisan 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 10 Sayı: 1

Kaynak Göster

APA Gürsu, B. Y., Dağ, İ., İset, Ş., Dıkmen, G. (2017). Influence of surface kind on biofilm formation by Salmonella spp. and Listeria monocytogenes from food-contact surfaces. Biological Diversity and Conservation, 10(1), 124-132.

18385183861838718388183892276122760