BibTex RIS Kaynak Göster

The assessment of biological accumulation on exposure in boron particles of Desmodesmus multivariabilis

Yıl 2016, Cilt: 9 Sayı: 3, 204 - 209, 15.12.2016

Öz

Due to the fact that our country has the world's leading boron deposits, aquatic ecosystems are exposed to intense forms of boron. In this research, bioaccumulation of boron particles micro and nano which are formed with removal and operation of boron in Turkey and of boron nanoparticles which are used in the nanotechnology industry have been evaluated on single cell fresh water algae Desmodesmus multivariabilis . As a result of this study, it has been observed that nano and micro boron particles accumulate in different amounts in the algae. When we look at the highest accumulation amounts, the accumulation was in 0.01 mg/l concentrations for both particles and it was measured as 6.390 ppb for nano boron, 12.490 ppb for micro boron. The difference between the concentration groups of boron particles in Desmodesmus multivariabilis was found to be significant P

Kaynakça

  • Bekish, Y. N., Poznyak, S. K., Tsybulskaya, L. S., Gaevskaya, T. V. (2010). Electrodeposited Ni–B alloy coatings: structure, corrosion resistance and mechanical properties. Electrochim Acta ,55:2223–2231.
  • Butterwick, L., De Oude, N., Raymond, K . (1989). Safety assessment of boron in aquatic and terrestrial Environments. Ecotoxicology and Environmental Safety, 17: 339-371.
  • Chen, C., Chang, H., Kao, P., Pan, J., Chang, J. (2012). Biosorption of cadmium by CO2-fixing microalga Scenedesmus obliquus CNW-N. Bioresour Technol, 105, 74–80.
  • Colvin, V. L. (2003). The potential environmental impact of engineered nanomaterials. Nat Biotechnol, 21:1166–70.
  • Conway,R. J., Hanna, K. S., Lenihan, S. H., Keller, A. A. (2014). Effects and implications of trophic transfer and accumulation of CeO2nanoparticles in a marine mussel. Environ. Sci. Technol.,48(3), pp 1517–1524.
  • Dağlıoğlu, Y., Çelebi, M.S., (2015a).The evaluation of the acute toxic effects of polyvinylferrocenium supported platinum nanoparticles on Artemia salina (Brine shrimp) . Biological Diversity and Conservation, ISSN 1308-8084 Online; ISSN 1308-5301 Print 8/3 304-312(2015).
  • Dağlıoğlu, Y., Kabakçı, D., Akdeniz, G., (2015b). Toxicity of Nano and non-nano boron particles on Apis mellifera (honey bee) Research Journal of Chemical and Environmental Sciences Res J. Chem. Environ. Sci., Vol 3 [3] June 2015: 06-13.
  • Davis, S. M., Drake, K. D., Maier, K. J. (2002). Toxicity of boron to duckweed, Spirodella polyrrhiza. Chemosphere, 48: 615-620.
  • EPA (2012). Nanomaterial Case Study: N l Sil i Nanoscale Silver in Disinfectant Spray, EPA/600/R-10/081F August 2012 www.epa.gov/research.
  • Evans, B. Favorito, A.N., Boyer, E., Risha, G.A., ., Wehrman, R.B., Kuo, K.K., 2004. Characterization of nano-sized energetic particle enhancement of solid-fuel burning rates in an X-ray transparent hybrid rocket engine. in: 40th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit, Florida.
  • Fernandez, E., Sanchez, E., Bonilla, I., Mateo, P., Ortega, P. (1984). Effect of boron on the growth and cell composition of Chlorella pyrnoidosa. Phyton., 44: 125-131.
  • Fisher, N. S., Reinfelder, J. R. (1995). The trophic transfer of metals in marine systems. In: Turner DR, Tessier A (eds) Metal speciation and bioavailability in aquatic systems. John Wiley & Sons, Chichester, p 363–406.
  • Forsythe, B. L., La Point, T. W.,Cobb, G. P.,Klaine, S. J.(1996).Silver in an experimental freshwater ecosystem. Proceedings, 4th Argentum International Conference on the Transport, Fate, and Effects of Silver in the Environment, Madison, WI, USA, August 25–28, pp. 185–189.
  • Glandon, R. P., McNabb, C. D. (1978). The uptake of boron by Lemna minor. Aquatic Botany, 4: 53-64.
  • Gottschalk, F., Sonderer, T., Scholz, R. W., Nowack, B. (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions.Environmental science & technology, 43.24: 9216-9222.
  • Gross, M. (1999). Travels to the nanoworld: miniature machinery in nature and technology. New York: Plenum Trade;. 254 pp.
  • Kastori, R., Maksimović, I., Kraljević-Balalić, M., Kobiljski, B. (2008). Physiological and genetic basis of plant tolerance of excess boron. Matica Srpska Proceedings for Natural Sciences, 114, 41-51, ISSN 0352 4906.
  • Kenrick, P., Crane. P. R. (1997). The origin and early evolution of plants on land. Nature, 389: 33–39.
  • Kim, D, El-Shall, H., Dennis, D., Morey, T. (2005). Interaction of PLGA nanoparticles with human blood constituents. Colloids Surf B Biointerfaces, 40:83–91.
  • Kuo, K. K., Risha, G. A., Evans, B. J., Boyer, E., (2004). Potential usage of energetic nano-sized powders for combustion and rocket propulsion. Mat. Res. Soc. Symp. Proc. 800, 1.1.1-1.1.12.
  • Moore, M. N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?. Environment International, 32(2006) 967-976.
  • Moore, M. N., Depledge, M. H., Readman, J. W, Leonard, P. (2004). An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management. Mutat Res, 552:247–68.
  • Mortensen, M. W, Sorensen, P. G., Bjorkdahl, O., Jensen, M. R., Gundersen, H. J. G., Bjornholm, T. (2006). Preparation and characterization of boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy. Appl Radiat Isotopes, 64:315–324.
  • Pelkmans, L., Helenius, A. (2002). Endocytosis via caveolae. Traffic;3:311–20.
  • Perkel, J. M. (2004). Nanoscience is out of the bottle. The Scientist, 17(15):20–3.
  • Ratte, H. T. (1999). Bioaccumulation and toxicity of silver compounds: a review.Environmental Toxicology and Chemistry,18.1 (1999): 89-108.
  • Reiman, J., Oberle, V., Zuhorn, I. S., Hoekstra, D. (2004). Size-dependant internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J, 377:159–69.
  • Rice, J. (2003). Environmental health indicators. Ocean & Coastal Management, 46.3 (2003): 235-259.
  • Rippka, R. (1988). Methods in enzymology, vol. 167. AcademicPress, New York.
  • Royal Society and Royal Academy of Engineering. (2004). Nanoscience and nanotechnologies: opportunities and uncertainties. RS policy document 19/04. London: The Royal Society, p. 113.
  • Saiki, M. K., Jennings, M. R., and Brumbaugh, W. G. (1993). Boron, molybdenum, and selenium in aquatic food chains from the lower San Joaquin River and its tributaries, California. Arch. Environ. Contam. Toxicol., 24: 307-319.
  • Schuler, C. A (1987). Impacts of agricultural drainwater and contaminants on wetlands at Kesterson Reservoir, California. MS Thesis, Oregon State University, Corvallis, OR, 136 pp.
  • Shin, G. W., Calder., S., Ugurlu, O. (2011). Production and characterization of boron nanoparticles synthesized with a thermal plasma system Steven L. GirshickJ Nanopart Res, 13:7187–7191 DOI 10.1007/s11051-011-0633-3.
  • Strayer, D. L., Caraco, N. F., Cole, J. J., Findlay, S., Pace, M. 1999. Transformation of Freshwater
  • Van Coillie, R., Couture, P., Visser, S. A. (1983). Use of algae in aquatic ecotoxicology. In: Aquatic Toxicology Jerome 0. Nriagu Editor. Advances in Environmental Science and Technology, Volume 13. Wiley, NY, 487-502.
  • Van Devener, B., Perez, J. P. L., Jankovich, J., Anderson, S. L. (2009). Oxide-free, catalyst-coated, fuel-soluble, air- stable boron nanopowder as combined combustion catalyst and high energy density fuel. Energ Fuel, 23:6111–6120.
  • Wang, D.,Chen, Y. (2015). Critical review of theinfluences of nanoparticles on biological wastewater treatment and sludgedigestion. CriticalReviews in Biotechnology, DOI: 10.3109/07388551.2015.1049509
  • Warheit, D. B. (2004). Nanoparticles: health impacts? Mater Today, 7:32–5
  • Warne, M. St. J., Hawker, D. W. (1995). The number of components in a mixture determines whether synergistic and antagonistic or additive toxicity predominate: the funnel hypothesis. Ecotoxicol Environ Saf, 31:23–8.
  • Westerhoff, P. K., Kiser, A., Hristovski, K.(2013). Nanomaterial removal and transformation during biological wastewater treatment. Environ. Eng. Sci., 30, 109–117.
  • Westerhoff, P., Song, G., Hristovskib, K., Mehlika Kiser, M. A. (2011). Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO 2 nanomaterials.Journal of Environmental Monitoring, 13.5 (2011): 1195-1203.
  • Zhang, X. W., Zou, Y. J., Yan, H., Wang, B., Chen, G. H., Wong, S. P. (2000). Electrical properties and annealing effects on the stress of RF-sputtered c-BN films. Mater Lett, 45:111–115.

Desmodesmus multivariabilis’in bor partiküllerine maruz kalmada biyolojik birikiminin değerlendirilmesi

Yıl 2016, Cilt: 9 Sayı: 3, 204 - 209, 15.12.2016

Öz

Ülkemizin dünyanın önde gelen bor madeni yataklarına sahip olmasından dolayı, sucul ekosistemler bora yoğun şekilde maruz kalmaktadır. Bu araştırmada, Türkiye de bor madeninin işletilmesi, çıkarılması ile oluşan bor partikülleri nano ve mikro bouytlu ile nanoteknoloji endüstrisinde kullanılan bor nanopartikülünün biyolojik birikimi tek hücreli tatlı su alginde Desmodesmus multivariabilis değerlendirilmiştir. Bu çalışma sonucunda, alglerde nano ve mikro bor partiküllerinin farklı miktarlarda birikim gösterdiği gözlenmiştir. En yüsek birikim miktarlarına baktığımızda her iki partikülü için 0.01 mg/l konsantrasyonlarda kaydedilmiştir. Ölçülen bor miktarları, nano bor için 6.390 ppb mikro bor için 12.490 ppb dir. Desmodesmus multivariabilis de bor partiküllerinin konsantrasyon grupları arasındaki farklılıklar istatistiki olarak önemli bulunmuştur P

Kaynakça

  • Bekish, Y. N., Poznyak, S. K., Tsybulskaya, L. S., Gaevskaya, T. V. (2010). Electrodeposited Ni–B alloy coatings: structure, corrosion resistance and mechanical properties. Electrochim Acta ,55:2223–2231.
  • Butterwick, L., De Oude, N., Raymond, K . (1989). Safety assessment of boron in aquatic and terrestrial Environments. Ecotoxicology and Environmental Safety, 17: 339-371.
  • Chen, C., Chang, H., Kao, P., Pan, J., Chang, J. (2012). Biosorption of cadmium by CO2-fixing microalga Scenedesmus obliquus CNW-N. Bioresour Technol, 105, 74–80.
  • Colvin, V. L. (2003). The potential environmental impact of engineered nanomaterials. Nat Biotechnol, 21:1166–70.
  • Conway,R. J., Hanna, K. S., Lenihan, S. H., Keller, A. A. (2014). Effects and implications of trophic transfer and accumulation of CeO2nanoparticles in a marine mussel. Environ. Sci. Technol.,48(3), pp 1517–1524.
  • Dağlıoğlu, Y., Çelebi, M.S., (2015a).The evaluation of the acute toxic effects of polyvinylferrocenium supported platinum nanoparticles on Artemia salina (Brine shrimp) . Biological Diversity and Conservation, ISSN 1308-8084 Online; ISSN 1308-5301 Print 8/3 304-312(2015).
  • Dağlıoğlu, Y., Kabakçı, D., Akdeniz, G., (2015b). Toxicity of Nano and non-nano boron particles on Apis mellifera (honey bee) Research Journal of Chemical and Environmental Sciences Res J. Chem. Environ. Sci., Vol 3 [3] June 2015: 06-13.
  • Davis, S. M., Drake, K. D., Maier, K. J. (2002). Toxicity of boron to duckweed, Spirodella polyrrhiza. Chemosphere, 48: 615-620.
  • EPA (2012). Nanomaterial Case Study: N l Sil i Nanoscale Silver in Disinfectant Spray, EPA/600/R-10/081F August 2012 www.epa.gov/research.
  • Evans, B. Favorito, A.N., Boyer, E., Risha, G.A., ., Wehrman, R.B., Kuo, K.K., 2004. Characterization of nano-sized energetic particle enhancement of solid-fuel burning rates in an X-ray transparent hybrid rocket engine. in: 40th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit, Florida.
  • Fernandez, E., Sanchez, E., Bonilla, I., Mateo, P., Ortega, P. (1984). Effect of boron on the growth and cell composition of Chlorella pyrnoidosa. Phyton., 44: 125-131.
  • Fisher, N. S., Reinfelder, J. R. (1995). The trophic transfer of metals in marine systems. In: Turner DR, Tessier A (eds) Metal speciation and bioavailability in aquatic systems. John Wiley & Sons, Chichester, p 363–406.
  • Forsythe, B. L., La Point, T. W.,Cobb, G. P.,Klaine, S. J.(1996).Silver in an experimental freshwater ecosystem. Proceedings, 4th Argentum International Conference on the Transport, Fate, and Effects of Silver in the Environment, Madison, WI, USA, August 25–28, pp. 185–189.
  • Glandon, R. P., McNabb, C. D. (1978). The uptake of boron by Lemna minor. Aquatic Botany, 4: 53-64.
  • Gottschalk, F., Sonderer, T., Scholz, R. W., Nowack, B. (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions.Environmental science & technology, 43.24: 9216-9222.
  • Gross, M. (1999). Travels to the nanoworld: miniature machinery in nature and technology. New York: Plenum Trade;. 254 pp.
  • Kastori, R., Maksimović, I., Kraljević-Balalić, M., Kobiljski, B. (2008). Physiological and genetic basis of plant tolerance of excess boron. Matica Srpska Proceedings for Natural Sciences, 114, 41-51, ISSN 0352 4906.
  • Kenrick, P., Crane. P. R. (1997). The origin and early evolution of plants on land. Nature, 389: 33–39.
  • Kim, D, El-Shall, H., Dennis, D., Morey, T. (2005). Interaction of PLGA nanoparticles with human blood constituents. Colloids Surf B Biointerfaces, 40:83–91.
  • Kuo, K. K., Risha, G. A., Evans, B. J., Boyer, E., (2004). Potential usage of energetic nano-sized powders for combustion and rocket propulsion. Mat. Res. Soc. Symp. Proc. 800, 1.1.1-1.1.12.
  • Moore, M. N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?. Environment International, 32(2006) 967-976.
  • Moore, M. N., Depledge, M. H., Readman, J. W, Leonard, P. (2004). An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management. Mutat Res, 552:247–68.
  • Mortensen, M. W, Sorensen, P. G., Bjorkdahl, O., Jensen, M. R., Gundersen, H. J. G., Bjornholm, T. (2006). Preparation and characterization of boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy. Appl Radiat Isotopes, 64:315–324.
  • Pelkmans, L., Helenius, A. (2002). Endocytosis via caveolae. Traffic;3:311–20.
  • Perkel, J. M. (2004). Nanoscience is out of the bottle. The Scientist, 17(15):20–3.
  • Ratte, H. T. (1999). Bioaccumulation and toxicity of silver compounds: a review.Environmental Toxicology and Chemistry,18.1 (1999): 89-108.
  • Reiman, J., Oberle, V., Zuhorn, I. S., Hoekstra, D. (2004). Size-dependant internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J, 377:159–69.
  • Rice, J. (2003). Environmental health indicators. Ocean & Coastal Management, 46.3 (2003): 235-259.
  • Rippka, R. (1988). Methods in enzymology, vol. 167. AcademicPress, New York.
  • Royal Society and Royal Academy of Engineering. (2004). Nanoscience and nanotechnologies: opportunities and uncertainties. RS policy document 19/04. London: The Royal Society, p. 113.
  • Saiki, M. K., Jennings, M. R., and Brumbaugh, W. G. (1993). Boron, molybdenum, and selenium in aquatic food chains from the lower San Joaquin River and its tributaries, California. Arch. Environ. Contam. Toxicol., 24: 307-319.
  • Schuler, C. A (1987). Impacts of agricultural drainwater and contaminants on wetlands at Kesterson Reservoir, California. MS Thesis, Oregon State University, Corvallis, OR, 136 pp.
  • Shin, G. W., Calder., S., Ugurlu, O. (2011). Production and characterization of boron nanoparticles synthesized with a thermal plasma system Steven L. GirshickJ Nanopart Res, 13:7187–7191 DOI 10.1007/s11051-011-0633-3.
  • Strayer, D. L., Caraco, N. F., Cole, J. J., Findlay, S., Pace, M. 1999. Transformation of Freshwater
  • Van Coillie, R., Couture, P., Visser, S. A. (1983). Use of algae in aquatic ecotoxicology. In: Aquatic Toxicology Jerome 0. Nriagu Editor. Advances in Environmental Science and Technology, Volume 13. Wiley, NY, 487-502.
  • Van Devener, B., Perez, J. P. L., Jankovich, J., Anderson, S. L. (2009). Oxide-free, catalyst-coated, fuel-soluble, air- stable boron nanopowder as combined combustion catalyst and high energy density fuel. Energ Fuel, 23:6111–6120.
  • Wang, D.,Chen, Y. (2015). Critical review of theinfluences of nanoparticles on biological wastewater treatment and sludgedigestion. CriticalReviews in Biotechnology, DOI: 10.3109/07388551.2015.1049509
  • Warheit, D. B. (2004). Nanoparticles: health impacts? Mater Today, 7:32–5
  • Warne, M. St. J., Hawker, D. W. (1995). The number of components in a mixture determines whether synergistic and antagonistic or additive toxicity predominate: the funnel hypothesis. Ecotoxicol Environ Saf, 31:23–8.
  • Westerhoff, P. K., Kiser, A., Hristovski, K.(2013). Nanomaterial removal and transformation during biological wastewater treatment. Environ. Eng. Sci., 30, 109–117.
  • Westerhoff, P., Song, G., Hristovskib, K., Mehlika Kiser, M. A. (2011). Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO 2 nanomaterials.Journal of Environmental Monitoring, 13.5 (2011): 1195-1203.
  • Zhang, X. W., Zou, Y. J., Yan, H., Wang, B., Chen, G. H., Wong, S. P. (2000). Electrical properties and annealing effects on the stress of RF-sputtered c-BN films. Mater Lett, 45:111–115.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Yeşim Dağlıoğlu Bu kişi benim

Betül Yılmaz Öztürk Bu kişi benim

Yayımlanma Tarihi 15 Aralık 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 9 Sayı: 3

Kaynak Göster

APA Dağlıoğlu, Y., & Yılmaz Öztürk, B. (2016). Desmodesmus multivariabilis’in bor partiküllerine maruz kalmada biyolojik birikiminin değerlendirilmesi. Biological Diversity and Conservation, 9(3), 204-209.

18385183861838718388183892276122760