Araştırma Makalesi
BibTex RIS Kaynak Göster

Biodiversity of Honey Bees (Apis mellifera L.) in Turkey by Geometric Morphometric Analysis

Yıl 2020, Cilt: 13 Sayı: 3, 282 - 289, 15.12.2020
https://doi.org/10.46309/biodicon.2020.773984

Öz

In this study, the honeybee diversity existing in Turkey were explained by geometric morphometric methods. For this purpose, the deviations of the junction points in the right wing veins were analyzed with the Draw Wing software program. Generalized Procrustes Analysis and Principal Component Analysis were performed to distinguish the populations according to the deviations in the intersections of the wing vein angles. In the first two canonical planes, honey bee populations were divided into two main groups, Southeastern Anatolia and others. While honey bees in Southeastern Anatolia, which differ in terms of shape morphology, formed a separate group in the UPGMA dendrogram, all the rest grouped closer with each other except Thrace region, which was not separated from the others in the scatter graph, formed a separate group in the UPGMA dendrogram.

Kaynakça

  • [1] Garnery, L., Franck, P., Franck, P., Vautrin, D., & Solignac, M. (1998). European honey bee (Apis mellifera mellifera). Genetics Selection Evolution. 30(1), 49-74. https://doi.org/10.1186/1297-9686-30-S1-S49
  • [2] Franck, P., Garnery L., Solignac M. & Cornuet J.M. (2000) Molecular confirmation of a fourth lineage in honeybees from the Near East. Apidologie, 31(2):167-180. doi: 10.1051/apido:2000114ff. ffhal-00891704f
  • [3] Bodenheimer, F.S. (1941) Studies on the honeybee and beekeeping in Turkey. Merkez Ziraat Mücadela Enstitüsü, Ankara.
  • [4] Ruttner, F. (1988) Biogeography and taxonomy of honeybees. Springer Verlag, Berlin, 298 pp
  • [5] Smith, D., Slaymaker A., Palmer M. & Kaftanoglu O. (1997) Turkish honey bees belong to the east Mediterranean mitochondrial lineage, Apidologie 28: 269-274. doi: 10.1051/apido:19970503
  • [6] Bodur, Ç., Kence M. & Kence A. (2007) Genetic structure of honeybee, Apis mellifera L. (Hymenoptera: Apidae) populations of Turkey inferred from microsatellite analysis. Journal of Apicultural Research. 46(1): 50-56. doi: 10.1080/00218839.2007.11101366
  • [7] Kandemir, I., Kence M. & Kence A. (2000) Genetic and morphometric variation in honeybee (Apis mellifera) population of Turkey. Apidologie, 31(3): 343-356. doi: 10.1051/apido:2000126f
  • [8] Kandemir, I., Kence M. & Kence A. (2005) Morphometric and electrophoretic variation in different honeybees (Apis mellifera) population. Turkish Journal of Veterinary & Animal Sciences, 29: 885-890. http://journals.tubitak.gov.tr/veterinary/abstract.htm?id=7728
  • [9] Kandemir, I., Kence M., Sheppard W.S. & Kence A. (2006a) Mitochondrial DNA variation in honeybee (Apis mellifera L.) population from Turkey, Journal of Apicultural Research and Bee World, 45(1): 33-38. doi: https://doi.org/10.1080/00218839.2006.11101310
  • [10] Palmer, M.N., Smith D.R. & Kaftanoglu O. (2000) Turkish Honeybees: Genetic variation and evidence for a fourth lineage of Apis mellifera mtDNA. The Journal of Heredity, 91(1): 42-46. doi: 10.1093/jhered/91.1.42.
  • [11] Oleksa, A. & Tofilski, A. (2015). Wing geometric morphometrics and microsatellite analysis provide similar discrimination of honey bee subspecies. Apidologie, 46:49–60. doi: 10.1007/s13592-014-0300-7.
  • [12] Kambur, M. & Kekeçoğlu, M. (2018a). The loss of genetic diversity on native Turkish honey bee (Apis mellifera L.) subspecies. Anadolu Journal of Agricultural Sciences, 33, 73-84. doi: 10.7161/omuanajas.337798.
  • [13] Kambur, M. & Kekeçoğlu, M. (2018b). The current situation of Turkey honey bee (Apis mellifera L.) biodiversity and conservations studies. Biological Diversity and Conservation, 11(1): 105-119. doi: 10.13140/RG.2.2.12203.54568
  • [14] Kekeçoğlu, M. (2018). Morphometric divergence of anatolian honeybees through loss of original traits: A dangerous outcome of Turkish apiculture. Sociobiology, 65(2): 232-243. doi: 10.13102/sociobiology.v65i2.1895.
  • [15] Nawrocka, A., Kandemir, İ. Fuchs, S. & Tofilski, A. (2018). Computer software for identification of honey bee subspecies and evolutionary lineages. Apidologie, 49:172–184. doi: 10.1007/s13592-017-0538-y.
  • [16] Bookstein, F.L. (1991) Morphometric tools for landmark data – Geometry and Biology. Cambridge University Press.
  • [17] Rohlf, F.J. (2000a). Statistical power comparisons among alternative morphometric methods. American Journal of Physical Anthropology. 111:463-478. doi: https://doi.org/10.1002/(SICI)1096-8644(200004)111:4<463::AID-AJPA3>3.0.CO;2-B
  • [18] Kambur, M. (2017). Türkiye bal arısı (Apis mellifera L.) biyoçeşitliliğinin geometrik morfometrik yöntemler ile belirlenmesi. Yüksek Lisans Tezi. Düzce Üniversitesi, Fen Bilimleri Enstitüsü, 108s, Düzce.
  • [19] Tofilski, A. (2008). Using geometric morphometrics and standard morphometry to discriminate three honeybee subspecies. Apidologie, 39(5):558-563. doi: 10.1051/apido:2008037
  • [20] Francoy, T.M., Silva R.A.O., Nunes-Silva P., Menezes C. & Imperatriz-Fonseca V.L. (2009a). Gender Identification of five genera of stingless bees (Apidae, Meliponini) based on wing morphology. Genetics and molecular research, 8(1): 207-214. doi: 10.4238/vol8-1gmr557
  • [21] Francoy, T.M., Wittmann D., Steinhage V., Drauschke M., Müller S., Cunha D.R., Nascimento A.M., Figueiredo V.L.C., Simoes Z.L.P., DeJong D., Arias M.C. & Gonçalves L.S. (2009b). Morphometric and Genetic changes in a population of Apis mellifera after 34 years of Africanization, Genetic and Molecular Research, 8 (2): 709-717.
  • [22] Hatjina, F., Haristos L. & Bouga M. (2004). Geometric morphometrics analysis of honey bee populations from Greek Mainland, Ionian Islands and Crete island. Proceedings of the First European Conference of Apidology, Udine, Italy pp.44.
  • [23] Rohlf, F.J. (2000b) Geometric morphometrics and phylogeny, Department of Ecology and Evolution, State University of New York, Stony Brook, NY, USA.
  • [24] Rohlf, F.J. (2006). Department of Ecology and Evolution, State University of NewYork at Stony Brook.
  • [25] Slice, D. E. (2001). Landmark configurations aligned by Procrustes analysis do not lie in Kendall's shape space. Systematic Biology, 50 (1): 141-149.
  • [26] Rohlf, F.J. (1999) On the use of shape spaces to compare morphometric methods. Hystrix. 11(1): 1–17. doi: https://doi.org/10.4404/hystrix-11.1-4134
  • [27] Alibert, P., Moureau B., Dommergues J.L. & David B. (2001) Differentiation at a micro geographical scale within two species of ground beetle, Carabus auronitens and C. nemoralis (Coleoptera, Carabidae): a geometrical morphometric approach. Zoologica Scripta. 30(4): 299-316. doi: https://doi.org/10.1046/j.1463-6409.2001.00068.x
  • [28] Zelditch, M.L., Swiderski D.L., Sheets H.D. & Fink W.L. (2004). Geometric morphometrics for biologists. Elsevier/Academic Press. London. 443 pp.
  • [29] Sokal, R.R. & Rohlf F.J. (1995) Biometry. The principles and practice of statistics in biological research. 3rd ed.W.H. Freeman and Company, New York, pp 887. [30] Kekeçoğlu M., Soysal M.İ. (2010). Genetic Diversity of Bee Ecotypes in Turkey and Evidence for Geographical Differences Romanian Biotechnological Letter. Romanian Biotechnological Letters, 15(5), 5646-5653.
  • [31] Rohlf, F.J. & Loy A., Corti M. (1996). Morphometric analysis of Old World Talpidae (Mammalia, Insectivora) using partial-warp scores. Systematic Biology, 45(3): 344-362. Sheppard, W.S., Arias M.C., Grech A. & Meixner M.D. (1997) Apis mellifera ruttneri, a new honey bee subspecies from Malta, Apidologie, 28, 287–293. doi: 10.1051/apido:19970505
  • [32] Adams, D.C. & Funk D.J. (1997) Morphometric inferences on sibling species and sexual dimorphism in Neochlamisus bebbianae leaf beetles: multivariate applications of the thin-plat spline. Systematic Biology, 46:180-194. doi: https://doi.org/10.1093/sysbio%2F46.1.180
  • [33] Aytekin, M.A., Terzo M., Rasmont, P. & Çağatay N. (2007) Landmark based geometric morphometric analysis of wing shape in Sibirocobombus Vogt (Hymenoptera: Apidae: Bombus Latreille). Annales De La Societe Entomologique De France. 43 (1): 95-102. doi: https://doi.org/10.1080/00379271.2007.10697499
  • [34] Arias, M.C. & Sheppard W.S. (1996) Molecular phylogenetics of honey bee subspecies (Apis mellifera L) inferred from mitochondrial DNA sequence. Molecular Phylogenetics and Evolution. 5(3): 557-566. doi: https://doi.org/10.1006/mpev.1996.0050
  • [35] Kandemir, I., Pinto M.A., Meixner M.D. & Sheppard Ws. (2006b) Hinf-I digestion of cytocrome oxidase I region is not a diagnostic test for A. m. lamarckii. Genetics and Molecular Biology, 29(4): 747-749. doi: https://doi.org/10.1590/S1415-47572006000400027

Biodiversity of Honey Bees (Apis mellifera L.) in Turkey by Geometric Morphometric Analysis

Yıl 2020, Cilt: 13 Sayı: 3, 282 - 289, 15.12.2020
https://doi.org/10.46309/biodicon.2020.773984

Öz

Bu çalışmada, Türkiye'deki mevcut bal arısı çeşitliliğini geometrik morfometrik yöntemle açıklanmaya çalışılmıştır. Bu amaçla, sağ kanat damarlarındaki kesişim noktalarının sapmaları Draw Wing yazılım programı ile analiz edildi. Popülasyonları kanat damar açılarının kesişim yerlerindeki sapmalara göre ayırt etmek için Generalize Procrustes Analizi ve Temel Bileşen Analizi yapıldı. İlk iki kanonik düzlemde bal arısı popülasyonları Güneydoğu Anadolu ve diğerleri olmak üzere iki ana gruba ayrıldı. Şekil morfolojisi açısından farklılık gösteren Güneydoğu Anadolu'daki bal arıları UPGMA dendrogramında ayrı bir grup oluştururken, Trakya Bölgesi dışında kalan populasyonların tamamı birbirine daha yakın bir grup oluşturmuştur. Saçılım grafiğinde diğerlerinden ayrılmayan Trakya populasyonu UPGMA dendogramında ayrı bir grup oluşturmuştur.

Kaynakça

  • [1] Garnery, L., Franck, P., Franck, P., Vautrin, D., & Solignac, M. (1998). European honey bee (Apis mellifera mellifera). Genetics Selection Evolution. 30(1), 49-74. https://doi.org/10.1186/1297-9686-30-S1-S49
  • [2] Franck, P., Garnery L., Solignac M. & Cornuet J.M. (2000) Molecular confirmation of a fourth lineage in honeybees from the Near East. Apidologie, 31(2):167-180. doi: 10.1051/apido:2000114ff. ffhal-00891704f
  • [3] Bodenheimer, F.S. (1941) Studies on the honeybee and beekeeping in Turkey. Merkez Ziraat Mücadela Enstitüsü, Ankara.
  • [4] Ruttner, F. (1988) Biogeography and taxonomy of honeybees. Springer Verlag, Berlin, 298 pp
  • [5] Smith, D., Slaymaker A., Palmer M. & Kaftanoglu O. (1997) Turkish honey bees belong to the east Mediterranean mitochondrial lineage, Apidologie 28: 269-274. doi: 10.1051/apido:19970503
  • [6] Bodur, Ç., Kence M. & Kence A. (2007) Genetic structure of honeybee, Apis mellifera L. (Hymenoptera: Apidae) populations of Turkey inferred from microsatellite analysis. Journal of Apicultural Research. 46(1): 50-56. doi: 10.1080/00218839.2007.11101366
  • [7] Kandemir, I., Kence M. & Kence A. (2000) Genetic and morphometric variation in honeybee (Apis mellifera) population of Turkey. Apidologie, 31(3): 343-356. doi: 10.1051/apido:2000126f
  • [8] Kandemir, I., Kence M. & Kence A. (2005) Morphometric and electrophoretic variation in different honeybees (Apis mellifera) population. Turkish Journal of Veterinary & Animal Sciences, 29: 885-890. http://journals.tubitak.gov.tr/veterinary/abstract.htm?id=7728
  • [9] Kandemir, I., Kence M., Sheppard W.S. & Kence A. (2006a) Mitochondrial DNA variation in honeybee (Apis mellifera L.) population from Turkey, Journal of Apicultural Research and Bee World, 45(1): 33-38. doi: https://doi.org/10.1080/00218839.2006.11101310
  • [10] Palmer, M.N., Smith D.R. & Kaftanoglu O. (2000) Turkish Honeybees: Genetic variation and evidence for a fourth lineage of Apis mellifera mtDNA. The Journal of Heredity, 91(1): 42-46. doi: 10.1093/jhered/91.1.42.
  • [11] Oleksa, A. & Tofilski, A. (2015). Wing geometric morphometrics and microsatellite analysis provide similar discrimination of honey bee subspecies. Apidologie, 46:49–60. doi: 10.1007/s13592-014-0300-7.
  • [12] Kambur, M. & Kekeçoğlu, M. (2018a). The loss of genetic diversity on native Turkish honey bee (Apis mellifera L.) subspecies. Anadolu Journal of Agricultural Sciences, 33, 73-84. doi: 10.7161/omuanajas.337798.
  • [13] Kambur, M. & Kekeçoğlu, M. (2018b). The current situation of Turkey honey bee (Apis mellifera L.) biodiversity and conservations studies. Biological Diversity and Conservation, 11(1): 105-119. doi: 10.13140/RG.2.2.12203.54568
  • [14] Kekeçoğlu, M. (2018). Morphometric divergence of anatolian honeybees through loss of original traits: A dangerous outcome of Turkish apiculture. Sociobiology, 65(2): 232-243. doi: 10.13102/sociobiology.v65i2.1895.
  • [15] Nawrocka, A., Kandemir, İ. Fuchs, S. & Tofilski, A. (2018). Computer software for identification of honey bee subspecies and evolutionary lineages. Apidologie, 49:172–184. doi: 10.1007/s13592-017-0538-y.
  • [16] Bookstein, F.L. (1991) Morphometric tools for landmark data – Geometry and Biology. Cambridge University Press.
  • [17] Rohlf, F.J. (2000a). Statistical power comparisons among alternative morphometric methods. American Journal of Physical Anthropology. 111:463-478. doi: https://doi.org/10.1002/(SICI)1096-8644(200004)111:4<463::AID-AJPA3>3.0.CO;2-B
  • [18] Kambur, M. (2017). Türkiye bal arısı (Apis mellifera L.) biyoçeşitliliğinin geometrik morfometrik yöntemler ile belirlenmesi. Yüksek Lisans Tezi. Düzce Üniversitesi, Fen Bilimleri Enstitüsü, 108s, Düzce.
  • [19] Tofilski, A. (2008). Using geometric morphometrics and standard morphometry to discriminate three honeybee subspecies. Apidologie, 39(5):558-563. doi: 10.1051/apido:2008037
  • [20] Francoy, T.M., Silva R.A.O., Nunes-Silva P., Menezes C. & Imperatriz-Fonseca V.L. (2009a). Gender Identification of five genera of stingless bees (Apidae, Meliponini) based on wing morphology. Genetics and molecular research, 8(1): 207-214. doi: 10.4238/vol8-1gmr557
  • [21] Francoy, T.M., Wittmann D., Steinhage V., Drauschke M., Müller S., Cunha D.R., Nascimento A.M., Figueiredo V.L.C., Simoes Z.L.P., DeJong D., Arias M.C. & Gonçalves L.S. (2009b). Morphometric and Genetic changes in a population of Apis mellifera after 34 years of Africanization, Genetic and Molecular Research, 8 (2): 709-717.
  • [22] Hatjina, F., Haristos L. & Bouga M. (2004). Geometric morphometrics analysis of honey bee populations from Greek Mainland, Ionian Islands and Crete island. Proceedings of the First European Conference of Apidology, Udine, Italy pp.44.
  • [23] Rohlf, F.J. (2000b) Geometric morphometrics and phylogeny, Department of Ecology and Evolution, State University of New York, Stony Brook, NY, USA.
  • [24] Rohlf, F.J. (2006). Department of Ecology and Evolution, State University of NewYork at Stony Brook.
  • [25] Slice, D. E. (2001). Landmark configurations aligned by Procrustes analysis do not lie in Kendall's shape space. Systematic Biology, 50 (1): 141-149.
  • [26] Rohlf, F.J. (1999) On the use of shape spaces to compare morphometric methods. Hystrix. 11(1): 1–17. doi: https://doi.org/10.4404/hystrix-11.1-4134
  • [27] Alibert, P., Moureau B., Dommergues J.L. & David B. (2001) Differentiation at a micro geographical scale within two species of ground beetle, Carabus auronitens and C. nemoralis (Coleoptera, Carabidae): a geometrical morphometric approach. Zoologica Scripta. 30(4): 299-316. doi: https://doi.org/10.1046/j.1463-6409.2001.00068.x
  • [28] Zelditch, M.L., Swiderski D.L., Sheets H.D. & Fink W.L. (2004). Geometric morphometrics for biologists. Elsevier/Academic Press. London. 443 pp.
  • [29] Sokal, R.R. & Rohlf F.J. (1995) Biometry. The principles and practice of statistics in biological research. 3rd ed.W.H. Freeman and Company, New York, pp 887. [30] Kekeçoğlu M., Soysal M.İ. (2010). Genetic Diversity of Bee Ecotypes in Turkey and Evidence for Geographical Differences Romanian Biotechnological Letter. Romanian Biotechnological Letters, 15(5), 5646-5653.
  • [31] Rohlf, F.J. & Loy A., Corti M. (1996). Morphometric analysis of Old World Talpidae (Mammalia, Insectivora) using partial-warp scores. Systematic Biology, 45(3): 344-362. Sheppard, W.S., Arias M.C., Grech A. & Meixner M.D. (1997) Apis mellifera ruttneri, a new honey bee subspecies from Malta, Apidologie, 28, 287–293. doi: 10.1051/apido:19970505
  • [32] Adams, D.C. & Funk D.J. (1997) Morphometric inferences on sibling species and sexual dimorphism in Neochlamisus bebbianae leaf beetles: multivariate applications of the thin-plat spline. Systematic Biology, 46:180-194. doi: https://doi.org/10.1093/sysbio%2F46.1.180
  • [33] Aytekin, M.A., Terzo M., Rasmont, P. & Çağatay N. (2007) Landmark based geometric morphometric analysis of wing shape in Sibirocobombus Vogt (Hymenoptera: Apidae: Bombus Latreille). Annales De La Societe Entomologique De France. 43 (1): 95-102. doi: https://doi.org/10.1080/00379271.2007.10697499
  • [34] Arias, M.C. & Sheppard W.S. (1996) Molecular phylogenetics of honey bee subspecies (Apis mellifera L) inferred from mitochondrial DNA sequence. Molecular Phylogenetics and Evolution. 5(3): 557-566. doi: https://doi.org/10.1006/mpev.1996.0050
  • [35] Kandemir, I., Pinto M.A., Meixner M.D. & Sheppard Ws. (2006b) Hinf-I digestion of cytocrome oxidase I region is not a diagnostic test for A. m. lamarckii. Genetics and Molecular Biology, 29(4): 747-749. doi: https://doi.org/10.1590/S1415-47572006000400027
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Koruma ve Biyolojik Çeşitlilik
Bölüm Research Article
Yazarlar

Meral Kekeçoğlu 0000-0002-2564-8343

Merve Kambur 0000-0001-9658-6584

Münir Uçak 0000-0003-1538-6711

Tuğçe Çaprazlı 0000-0001-9109-0969

Songül Bir 0000-0002-4116-4138

Yayımlanma Tarihi 15 Aralık 2020
Gönderilme Tarihi 8 Ağustos 2020
Kabul Tarihi 29 Ekim 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 13 Sayı: 3

Kaynak Göster

APA Kekeçoğlu, M., Kambur, M., Uçak, M., Çaprazlı, T., vd. (2020). Biodiversity of Honey Bees (Apis mellifera L.) in Turkey by Geometric Morphometric Analysis. Biological Diversity and Conservation, 13(3), 282-289. https://doi.org/10.46309/biodicon.2020.773984

18385183861838718388183892276122760