Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of vanillic acid against oxidative stress induced by glyphosate in Saccharomyces cerevisiae

Yıl 2019, Cilt: 12 Sayı: 3, 34 - 43, 15.12.2019

Öz

Glyphosate is a widely used broad-spectrum herbicide. Vanilic acid is a phenolic acid found naturally in many plants. In this study, the effect of vanilic acid against oxidative stress induced by glyphosate in Saccharomyces cerevisiae was investigated. S. cerevisiae was proliferated and developed in YEDP medium. Both glyphosate and vanilic acid were added to the development environment of Saccharomyces cerevisiae to be 200, 400 and 800 mg per liter. At the end of the experiment, Saccharomyces cerevisiae samples (Reduced glutathione (GSH), oxidized glutathione (GSSG), Malondialhedit (MDA), fatty acid, E, D, K vitamins and phytosterol) were analyzed in HPLC and GC devices. Antioxidant potential of vanillic acid was also identified. In this study, the effect of vanillic acid against oxidative stress and toxicity caused by glyphosate in S. cerevisiae was investigated for the first time. In S. cerevisiae administered glyphosate, there were statistically significant changes in MDA, GSH, GSSG, protein, fatty acid, E, D, K vitamins and phytosterol levels, but the vanilic acid applied was detected statistically significantly reduced the changes in these parameters. As a result of analysis by gas chromatography, the yeast cell of octanoic acid (8: 0), lauric acid (12: 0), myristic acid (14: 0), palmitic acid (16: 0), palmitoleic acid (16:1 n-7), stearic acid (18: 0), oleic acid (18:1 n-9) and linoleic acid (18:2 n-6) acids were observed. Vitamin D, E and K were analyzed with HPLC device. As a result of this analysis, molecules such as K2, δ-tocopherol, D2, D3, α-tocopherol, ergosterol, K1, stigmasterol, β-sitosterol were identified. Biochemical analysis showed that cell density in culture medium containing 800 mg per liter of glyphosate decreased. It was found that vanilic acid showed beneficial effects against oxidative stress caused by glyphosate in Saccharomyces cerevisiae.

Kaynakça

  • Yılmaz, S., Aslım, B., & Beyatlı, Y. (1997). Glifosat herbisidinin bazı laktik asit bakterilerinin gelişimi ve asit üretimine etkisi. Tarım Bilimleri Dergisi, 3(3), 70-77.
  • Uren Webster, T.M., & Santos, E.M. (2015). Global transcriptomic profiling demonstrates induction of oxidative stress and of compensatory cellular stress responses in brown trout exposed to glyphosate and Roundup. BMC Genomics, 16:32. doi: 10.1186/s12864-015-1254-5.
  • Burella, P.M., Odetti, L.M., Simoniello, M.F., & Poletta, G.L. (2018). Oxidative damage and antioxidant defense in Caiman latirostris (Broad-snouted caiman) exposed in ovo to pesticide formulations. Ecotoxicol. Environ. Saf., 161, 437-443. doi: 10.1016/j.ecoenv.2018.06.006.
  • Gallegos, C.E., Baier, C.J., Bartos, M., Bras, C., Domínguez, S., Mónaco, N., … & Minetti, A. (2018). Perinatal glyphosate-based herbicide exposure in rats alters brain antioxidant status, glutamate and acetylcholine metabolism and affects recognition memory. Neurotox. Res., 34(3), 363-374. doi: 10.1007/s12640-018-9894-2.
  • Turkmen, R., Birdane, Y.O., Demirel, H.H., Yavuz, H., Kabu, M., & Ince, S. (2019). Antioxidant and cytoprotective effects of N-acetylcysteine against subchronic oral glyphosate-based herbicide-induced oxidative stress in rats. Environ. Sci. Pollut. Res. Int., 26(11),11427-11437. doi: 10.1007/s11356-019-04585-5.
  • Amin, F.U., Shah, S.A., & Kim, M.O. (2017). Vanillic acid attenuates Aβ1-42-induced oxidative stress and cognitive impairment in mice. Sci. Rep., 7, 40753. doi: 10.1038/srep40753.
  • Vinothiya, K., & Ashokkumar, N. (2017). Modulatory effect of vanillic acid on antioxidant status in high fat diet-induced changes in diabetic hypertensive rats. Biomed Pharmacother., 87, 640-652. doi: 10.1016/j.biopha.2016.12.134.
  • Brand-Williams, W., Cuvelier, M.E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30.
  • Klejdus, B., Zehnálek, J., Adam, V., Petrek, J., Kizek, R., Vacek, J.,…& Kubán, V. (2004). Sub-picomole high-performance liquid chromatographic/mass spectrometric determination of glutathione in the maize (Zea mays L.) kernels exposed to cadmium. Analytica Chimica Acta, 520, 117-124. https://doi.org/10.1016/j.aca.2004.02.060
  • Yılmaz, O., Keser, S., Tuzcu, M., Güvenç, M., Çetintaş, B., Irtegun, S.,…& Şahin, K. (2009). A practical HPLC method to measure reduced (GSH) and oxidized (GSSG) glutathione concentrations in animal tissues. Journal of Animal Veterinary Advances, 8, 343-347.
  • Karatas, F., Karatepe, M., & Baysar, A. (2002). Determination of free malondialdehyde in human serum by high-performance liquid chromatography. Anal. Biochem., 311(1), 76-9.
  • Karatepe, M. (2004). Simultaneous determination of ascorbic acid and free malondialdehyde in human serum by HPLC/UV. LC-GC North America, 22(4), 362-365.
  • Hara, A., & Radin, N.S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem., 90(1), 420-6.
  • Christie, W.W. (1989). Gas chromatography and lipids. Glasgow: The Oily Press Ltd.
  • Tvrzická, E., Vecka, M., Staňková, B., & Žák, A. (2002). Analysis of fatty acids in plasma lipoproteins by gas chromatography–flame ionization detection: Quantitative aspects. Analytica Chimica Acta, 465, 337-350.
  • Katsanidis, E., & Addis, P.B. (1999). Novel HPLC analysis of tocopherols, tocotrienols, and cholesterol in tissue. Free Radic. Biol. Med., 27(11-12), 1137-40.
  • López-Cervantes, J., Sánchez-Machado, D.I., & Ríos-Vázquez, N.J. (2006). High-performance liquid chromatography method for the simultaneous quantification of retinol, alpha-tocopherol, and cholesterol in shrimp waste hydrolysate. J. Chromatogr. A., 1105(1-2), 135-9.
  • Braconi, D., Bernardini, G., Fiorani, M., Azzolini, C., Marzocchi, B., Proietti, F.,… & Santucci, A. (2010). Oxidative damage induced by herbicides is mediated by thiol oxidation and hydroperoxides production. Free. Radic. Res., 44(8), 891-906.
  • Luo, L., Wang, F., Zhang, Y., Zeng, M., Zhong, C., & Xiao, F. (2017). In vitro cytotoxicity assessment of roundup (glyphosate) in L-02 hepatocytes. J. Environ. Sci. Health B., 52(6), 410-417. doi: 10.1080/03601234.2017.1293449.
  • de Souza, J.S., Laureano-Melo, R., Herai, R.H., da Conceição, R.R., Oliveira, K.C., da Silva, I.D.C.G.,… & Giannocco, G. (2019). Maternal glyphosate-based herbicide exposure alters antioxidant-related genes in the brain and serum metabolites of male rat offspring. Neurotoxicology, 74, 121-131. doi: 10.1016/j.neuro.2019.06.004.
  • Gehin, A., Guyon, C., & Nicod, L. (2006). Glyphosate-induced antioxidant imbalance in HaCaT: The protective effect of vitamins C and E. Environ. Toxicol. Pharmacol., 22(1), 27-34. doi: 10.1016/j.etap.2005.11.003.
  • Kong, Z., Li, M., An, J., Chen, J., Bao, Y., Francis, F.,… & Dai, X. (2016). The fungicide triadimefon affects beer flavor and composition by influencing Saccharomyces cerevisiae metabolism. Sci. Rep., 6, 33552. doi: 10.1038/srep33552.
  • Peters, L.P., Carvalho, G., Martins, P.F., Dourado, M.N., Vilhena, M.B., Pileggi, M.,… & Azevedo, R.A. (2014). Differential responses of the antioxidant system of ametryn and clomazone tolerant bacteria. PLoS One, 9(11), e112271. doi: 10.1371/journal.pone.0112271.
  • Dianat, M., Radmanesh, E., Badavi, M., Mard, S.A., & Goudarzi, G. (2016). Disturbance effects of PM₁₀ on iNOS and eNOS mRNA expression levels and antioxidant activity induced by ischemia-reperfusion injury in isolated rat heart: protective role of vanillic acid. Environ. Sci. Pollut. Res. Int., 23(6), 5154-65. doi: 10.1007/s11356-015-5759-x.
  • Anbalagan, V., Raju, K., & Shanmugam, M. (2017). Assessment of lipid peroxidation and antioxidant status in vanillic acid treated 7,12-Dimethylbenz[a]anthracene induced hamster buccal pouch carcinogenesis. J. Clin. Diagn. Res., 11(3), BF01-BF04. doi: 10.7860/JCDR/2017/23537.9369.
  • Avdatek, F., Birdane, Y.O., Türkmen, R., & Demirel, H.H. (2018). Ameliorative effect of resveratrol on testicular oxidative stress, spermatological parameters and DNA damage in glyphosate-based herbicide-exposed rats. Andrologia, 50(7), e13036. doi: 10.1111/and.13036.
  • Hu, Z., He, B., Ma, L., Sun, Y., Niu, Y., & Zeng, B. (2017). Recent advances in ergosterol biosynthesis and regulation mechanisms in Saccharomyces cerevisiae. Indian J. Microbiol., 57(3), 270-277. doi: 10.1007/s12088-017-0657-1.
  • Kagan, I.A., Michel, A., Prause, A., Scheffler, B.E., Pace, P., & Duke, S.O. (2005). Gene transcription profiles of Saccharomyces cerevisiae after treatment with plant protection fungicides that inhibit ergosterol biosynthesis. Pesticide Biochemistry and Physiology, 82, 133–153. https://doi.org/10.1016/j.pestbp.2005.02.002
  • Bernat, P., Nykiel-Szymańska, J., Stolarek, P., Słaba, M., Szewczyk, R., & Różalska, S. (2018). 2,4-dichlorophenoxyacetic acid-induced oxidative stress: Metabolome and membrane modifications in Umbelopsis isabellina, a herbicide degrader. PLoS One, 13(6), e0199677. doi: 10.1371/journal.pone.0199677.
  • Viegas, C.A., Cabral, M.G., Teixeira, M.C., Neumann, G., Heipieper, H.J, & Sá-Correia, I. (2005). Yeast adaptation to 2,4-dichlorophenoxyacetic acid involves increased membrane fatty acid saturation degree and decreased OLE1 transcription. Biochem. Biophys. Res. Commun., 330(1), 271-8.
  • Tehlivets, O., Scheuringer, K., & Kohlwein, S.D. (2007). Fatty acid synthesis and elongation in yeast. Biochim. Biophys. Acta., 1771(3), 255-70.
  • Kieliszek, M., Błażejak, S., Bzducha-Wróbel, A., & Kot, A.M. (2019). Effect of selenium on lipid and amino acid metabolism in yeast cells. Biol. Trace Elem. Res., 187(1), 316-327. doi: 10.1007/s12011-018-1342-x.
  • Nakbi, A., Tayeb, W., Grissa, A., Issaoui, M., Dabbou, S., Chargui, I.,… & Hammami, M. (2010). Effects of olive oil and its fractions on oxidative stress and the liver's fatty acid composition in 2,4-Dichlorophenoxyacetic acid-treated rats. Nutr. Metab. (Lond.)., 7:80. doi: 10.1186/1743-7075-7-80.
  • Saxena, R., Garg, P., & Jain, D.K. (2011). In vitro anti-oxidant effect of vitamin e on oxidative stress induced due to pesticides in rat erythrocytes. Toxicol. Int., 18(1), 73-6. doi: 10.4103/0971-6580.75871.
  • Turkmen, R., Birdane, Y.O., Demirel, H.H., Kabu, M., & Ince, S. (2019). Protective effects of resveratrol on biomarkers of oxidative stress, biochemical and histopathological changes induced by sub-chronic oral glyphosate-based herbicide in rats. Toxicol. Res. (Camb.)., 8(2), 238-245. doi: 10.1039/c8tx00287h.
  • Okan, O.T., Varlıbaş, H., Öz, M., & Deniz, İ. (2013). Antioksidan analiz yöntemleri ve doğu Karadeniz bölgesinde antioksidan kaynağı olarak kullanılabilecek odun dışı bazı bitkisel ürünler. Kastamonu Üni., Orman Fakültesi Dergisi, 13(1), 48-59.
  • Kitiş, Y.E., Yazır, B., & Özkaya, H.Ö. (2016). The effects of some soil herbicides on root colonization and spore number of mycorrhizal fungi Glomus intraradice. Biological Diversity and Conservation, 9/2, 1-7.
  • Torretta, V., Katsoyiannis, I.A., Viotti, P., & Rada, E.C. (2018). Critical review of the effects of glyphosate exposure to the environment and humans through the food supply chain. Sustainability, 10, 950. doi:10.3390/su10040950.
  • Milić, M., Žunec, S., Micek, V., Kašuba, V., Mikolić, A., Lovaković B.T.,…& Želježić, D. (2018). Oxidative stress, cholinesterase activity, and DNA damage in the liver, whole blood, and plasma of Wistar rats following a 28-day exposure to glyphosate. Arh. Hig. Rada. Toksikol., 69, 154-168. doi: 10.2478/aiht-2018-69-3114

Glifosatın Saccharomyces cerevisiae’da indüklediği oksidatif strese karşı vanilik asidin etkisi

Yıl 2019, Cilt: 12 Sayı: 3, 34 - 43, 15.12.2019

Öz

Glifosat, yaygın olarak kullanılan geniş spektrumlu bir herbisittir. Vanilik asit, pek çok bitkide doğal olarak bulunan fenolik asittir. Bu çalışmada, glifosatın Saccharomyces cerevisiae’da indüklediği oksidatif strese karşı vanilik asidin etkisi araştırılmıştır. S. cerevisiae YEDP besiyerinde çoğaltılmış ve geliştirilmiştir. Hem glifosat hem de vanilik asit Saccharomyces cerevisiae’nın gelişme ortamına litrede 200, 400 ve 800 mg olacak şekilde eklendi. Deney sonunda Saccharomyces cerevisiae örneklerinin analizleri (İndirgenmiş glutatyon (GSH), yükseltgenmiş glutatyon (GSSG), Malondialdehit (MDA), yağ asidi, E, D, K vitamin ve fitosterol) HPLC ve GC cihazlarında yapıldı. Ayrıca vanilik asidin antioksidan potansiyeli de tespit edildi. Bu çalışmada glifosatın S. cerevisiae’da oluşturduğu toksisite ve oksidatif strese karşı vanilik asidin etkisi ilk kez incelenmiştir. Glifosat uygulanan S. cerevisiae’da MDA, GSH, GSSG, protein, yağ asidi, E, D, K vitamin ve fitosterol düzeyinde istatistiksel olarak önemli değişikliklerin olduğu, fakat uygulanan vanilik asidin bu parametrelerde oluşan değişiklikleri istatistiksel olarak önemli ölçüde azalttığı tespit edildi. Gaz kromatografisi ile yapılan analiz sonucunda, maya hücresinde oktanoik asit (8:0), laurik asit (12:0), miristik asit (14:0), palmitik asit (16:0), palmitoleik asit (16:1 n-7), stearik asit (18:0), oleik asit (18:1 n-9) ve linoleik asit (18:2n-6) asitlerinin bulunduğu tespit edildi. D, E ve K vitamin miktarlarının analizi ise HPLC Cihazı ile yapıldı. Bu analiz sonucunda, K2, α-tokoferol, D2, D3, δ-tokoferol, ergosterol, K1, stigmasterol, β-sitosterol gibi moleküller tanımlandı. Biyokimyasal analizler sonucunda litrede 800 mg glifosat içeren kültür ortamındaki hücre yoğunluğunun azaldığı belirlendi. Glifosatın Saccharomyces cerevisiae'da oluşturduğu oksidatif strese karşı vanilik asidin faydalı etkiler gösterdiği tespit edildi.

Kaynakça

  • Yılmaz, S., Aslım, B., & Beyatlı, Y. (1997). Glifosat herbisidinin bazı laktik asit bakterilerinin gelişimi ve asit üretimine etkisi. Tarım Bilimleri Dergisi, 3(3), 70-77.
  • Uren Webster, T.M., & Santos, E.M. (2015). Global transcriptomic profiling demonstrates induction of oxidative stress and of compensatory cellular stress responses in brown trout exposed to glyphosate and Roundup. BMC Genomics, 16:32. doi: 10.1186/s12864-015-1254-5.
  • Burella, P.M., Odetti, L.M., Simoniello, M.F., & Poletta, G.L. (2018). Oxidative damage and antioxidant defense in Caiman latirostris (Broad-snouted caiman) exposed in ovo to pesticide formulations. Ecotoxicol. Environ. Saf., 161, 437-443. doi: 10.1016/j.ecoenv.2018.06.006.
  • Gallegos, C.E., Baier, C.J., Bartos, M., Bras, C., Domínguez, S., Mónaco, N., … & Minetti, A. (2018). Perinatal glyphosate-based herbicide exposure in rats alters brain antioxidant status, glutamate and acetylcholine metabolism and affects recognition memory. Neurotox. Res., 34(3), 363-374. doi: 10.1007/s12640-018-9894-2.
  • Turkmen, R., Birdane, Y.O., Demirel, H.H., Yavuz, H., Kabu, M., & Ince, S. (2019). Antioxidant and cytoprotective effects of N-acetylcysteine against subchronic oral glyphosate-based herbicide-induced oxidative stress in rats. Environ. Sci. Pollut. Res. Int., 26(11),11427-11437. doi: 10.1007/s11356-019-04585-5.
  • Amin, F.U., Shah, S.A., & Kim, M.O. (2017). Vanillic acid attenuates Aβ1-42-induced oxidative stress and cognitive impairment in mice. Sci. Rep., 7, 40753. doi: 10.1038/srep40753.
  • Vinothiya, K., & Ashokkumar, N. (2017). Modulatory effect of vanillic acid on antioxidant status in high fat diet-induced changes in diabetic hypertensive rats. Biomed Pharmacother., 87, 640-652. doi: 10.1016/j.biopha.2016.12.134.
  • Brand-Williams, W., Cuvelier, M.E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30.
  • Klejdus, B., Zehnálek, J., Adam, V., Petrek, J., Kizek, R., Vacek, J.,…& Kubán, V. (2004). Sub-picomole high-performance liquid chromatographic/mass spectrometric determination of glutathione in the maize (Zea mays L.) kernels exposed to cadmium. Analytica Chimica Acta, 520, 117-124. https://doi.org/10.1016/j.aca.2004.02.060
  • Yılmaz, O., Keser, S., Tuzcu, M., Güvenç, M., Çetintaş, B., Irtegun, S.,…& Şahin, K. (2009). A practical HPLC method to measure reduced (GSH) and oxidized (GSSG) glutathione concentrations in animal tissues. Journal of Animal Veterinary Advances, 8, 343-347.
  • Karatas, F., Karatepe, M., & Baysar, A. (2002). Determination of free malondialdehyde in human serum by high-performance liquid chromatography. Anal. Biochem., 311(1), 76-9.
  • Karatepe, M. (2004). Simultaneous determination of ascorbic acid and free malondialdehyde in human serum by HPLC/UV. LC-GC North America, 22(4), 362-365.
  • Hara, A., & Radin, N.S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem., 90(1), 420-6.
  • Christie, W.W. (1989). Gas chromatography and lipids. Glasgow: The Oily Press Ltd.
  • Tvrzická, E., Vecka, M., Staňková, B., & Žák, A. (2002). Analysis of fatty acids in plasma lipoproteins by gas chromatography–flame ionization detection: Quantitative aspects. Analytica Chimica Acta, 465, 337-350.
  • Katsanidis, E., & Addis, P.B. (1999). Novel HPLC analysis of tocopherols, tocotrienols, and cholesterol in tissue. Free Radic. Biol. Med., 27(11-12), 1137-40.
  • López-Cervantes, J., Sánchez-Machado, D.I., & Ríos-Vázquez, N.J. (2006). High-performance liquid chromatography method for the simultaneous quantification of retinol, alpha-tocopherol, and cholesterol in shrimp waste hydrolysate. J. Chromatogr. A., 1105(1-2), 135-9.
  • Braconi, D., Bernardini, G., Fiorani, M., Azzolini, C., Marzocchi, B., Proietti, F.,… & Santucci, A. (2010). Oxidative damage induced by herbicides is mediated by thiol oxidation and hydroperoxides production. Free. Radic. Res., 44(8), 891-906.
  • Luo, L., Wang, F., Zhang, Y., Zeng, M., Zhong, C., & Xiao, F. (2017). In vitro cytotoxicity assessment of roundup (glyphosate) in L-02 hepatocytes. J. Environ. Sci. Health B., 52(6), 410-417. doi: 10.1080/03601234.2017.1293449.
  • de Souza, J.S., Laureano-Melo, R., Herai, R.H., da Conceição, R.R., Oliveira, K.C., da Silva, I.D.C.G.,… & Giannocco, G. (2019). Maternal glyphosate-based herbicide exposure alters antioxidant-related genes in the brain and serum metabolites of male rat offspring. Neurotoxicology, 74, 121-131. doi: 10.1016/j.neuro.2019.06.004.
  • Gehin, A., Guyon, C., & Nicod, L. (2006). Glyphosate-induced antioxidant imbalance in HaCaT: The protective effect of vitamins C and E. Environ. Toxicol. Pharmacol., 22(1), 27-34. doi: 10.1016/j.etap.2005.11.003.
  • Kong, Z., Li, M., An, J., Chen, J., Bao, Y., Francis, F.,… & Dai, X. (2016). The fungicide triadimefon affects beer flavor and composition by influencing Saccharomyces cerevisiae metabolism. Sci. Rep., 6, 33552. doi: 10.1038/srep33552.
  • Peters, L.P., Carvalho, G., Martins, P.F., Dourado, M.N., Vilhena, M.B., Pileggi, M.,… & Azevedo, R.A. (2014). Differential responses of the antioxidant system of ametryn and clomazone tolerant bacteria. PLoS One, 9(11), e112271. doi: 10.1371/journal.pone.0112271.
  • Dianat, M., Radmanesh, E., Badavi, M., Mard, S.A., & Goudarzi, G. (2016). Disturbance effects of PM₁₀ on iNOS and eNOS mRNA expression levels and antioxidant activity induced by ischemia-reperfusion injury in isolated rat heart: protective role of vanillic acid. Environ. Sci. Pollut. Res. Int., 23(6), 5154-65. doi: 10.1007/s11356-015-5759-x.
  • Anbalagan, V., Raju, K., & Shanmugam, M. (2017). Assessment of lipid peroxidation and antioxidant status in vanillic acid treated 7,12-Dimethylbenz[a]anthracene induced hamster buccal pouch carcinogenesis. J. Clin. Diagn. Res., 11(3), BF01-BF04. doi: 10.7860/JCDR/2017/23537.9369.
  • Avdatek, F., Birdane, Y.O., Türkmen, R., & Demirel, H.H. (2018). Ameliorative effect of resveratrol on testicular oxidative stress, spermatological parameters and DNA damage in glyphosate-based herbicide-exposed rats. Andrologia, 50(7), e13036. doi: 10.1111/and.13036.
  • Hu, Z., He, B., Ma, L., Sun, Y., Niu, Y., & Zeng, B. (2017). Recent advances in ergosterol biosynthesis and regulation mechanisms in Saccharomyces cerevisiae. Indian J. Microbiol., 57(3), 270-277. doi: 10.1007/s12088-017-0657-1.
  • Kagan, I.A., Michel, A., Prause, A., Scheffler, B.E., Pace, P., & Duke, S.O. (2005). Gene transcription profiles of Saccharomyces cerevisiae after treatment with plant protection fungicides that inhibit ergosterol biosynthesis. Pesticide Biochemistry and Physiology, 82, 133–153. https://doi.org/10.1016/j.pestbp.2005.02.002
  • Bernat, P., Nykiel-Szymańska, J., Stolarek, P., Słaba, M., Szewczyk, R., & Różalska, S. (2018). 2,4-dichlorophenoxyacetic acid-induced oxidative stress: Metabolome and membrane modifications in Umbelopsis isabellina, a herbicide degrader. PLoS One, 13(6), e0199677. doi: 10.1371/journal.pone.0199677.
  • Viegas, C.A., Cabral, M.G., Teixeira, M.C., Neumann, G., Heipieper, H.J, & Sá-Correia, I. (2005). Yeast adaptation to 2,4-dichlorophenoxyacetic acid involves increased membrane fatty acid saturation degree and decreased OLE1 transcription. Biochem. Biophys. Res. Commun., 330(1), 271-8.
  • Tehlivets, O., Scheuringer, K., & Kohlwein, S.D. (2007). Fatty acid synthesis and elongation in yeast. Biochim. Biophys. Acta., 1771(3), 255-70.
  • Kieliszek, M., Błażejak, S., Bzducha-Wróbel, A., & Kot, A.M. (2019). Effect of selenium on lipid and amino acid metabolism in yeast cells. Biol. Trace Elem. Res., 187(1), 316-327. doi: 10.1007/s12011-018-1342-x.
  • Nakbi, A., Tayeb, W., Grissa, A., Issaoui, M., Dabbou, S., Chargui, I.,… & Hammami, M. (2010). Effects of olive oil and its fractions on oxidative stress and the liver's fatty acid composition in 2,4-Dichlorophenoxyacetic acid-treated rats. Nutr. Metab. (Lond.)., 7:80. doi: 10.1186/1743-7075-7-80.
  • Saxena, R., Garg, P., & Jain, D.K. (2011). In vitro anti-oxidant effect of vitamin e on oxidative stress induced due to pesticides in rat erythrocytes. Toxicol. Int., 18(1), 73-6. doi: 10.4103/0971-6580.75871.
  • Turkmen, R., Birdane, Y.O., Demirel, H.H., Kabu, M., & Ince, S. (2019). Protective effects of resveratrol on biomarkers of oxidative stress, biochemical and histopathological changes induced by sub-chronic oral glyphosate-based herbicide in rats. Toxicol. Res. (Camb.)., 8(2), 238-245. doi: 10.1039/c8tx00287h.
  • Okan, O.T., Varlıbaş, H., Öz, M., & Deniz, İ. (2013). Antioksidan analiz yöntemleri ve doğu Karadeniz bölgesinde antioksidan kaynağı olarak kullanılabilecek odun dışı bazı bitkisel ürünler. Kastamonu Üni., Orman Fakültesi Dergisi, 13(1), 48-59.
  • Kitiş, Y.E., Yazır, B., & Özkaya, H.Ö. (2016). The effects of some soil herbicides on root colonization and spore number of mycorrhizal fungi Glomus intraradice. Biological Diversity and Conservation, 9/2, 1-7.
  • Torretta, V., Katsoyiannis, I.A., Viotti, P., & Rada, E.C. (2018). Critical review of the effects of glyphosate exposure to the environment and humans through the food supply chain. Sustainability, 10, 950. doi:10.3390/su10040950.
  • Milić, M., Žunec, S., Micek, V., Kašuba, V., Mikolić, A., Lovaković B.T.,…& Želježić, D. (2018). Oxidative stress, cholinesterase activity, and DNA damage in the liver, whole blood, and plasma of Wistar rats following a 28-day exposure to glyphosate. Arh. Hig. Rada. Toksikol., 69, 154-168. doi: 10.2478/aiht-2018-69-3114
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Koruma ve Biyolojik Çeşitlilik
Bölüm Araştırma Makaleleri
Yazarlar

Gözde Özcan Bu kişi benim

Ersin Demir

Prof. Dr. Ökkeş Yılmaz

Figen Erdem Erişir Bu kişi benim

Hatayi Zengin Bu kişi benim

Yayımlanma Tarihi 15 Aralık 2019
Gönderilme Tarihi 25 Eylül 2019
Kabul Tarihi 15 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 12 Sayı: 3

Kaynak Göster

APA Özcan, G., Demir, E., Yılmaz, P. D. . Ö., Erdem Erişir, F., vd. (2019). Glifosatın Saccharomyces cerevisiae’da indüklediği oksidatif strese karşı vanilik asidin etkisi. Biological Diversity and Conservation, 12(3), 34-43.

18385183861838718388183892276122760