Research Article
BibTex RIS Cite

Klinik Candida izolatlarında karvakrolün antimikrobiyal etkilerinin araştırılması ve immunoelektron mikroskobik yöntem ile görüntülenmesi

Year 2022, Volume: 15 Issue: 2, 265 - 272, 15.08.2022
https://doi.org/10.46309/biodicon.2022.1120159

Abstract

Candida türleri yüzeyel ve sistemik hastalığa sebep olurlar. Candida biyofilmleri de hastane kaynaklı ve vücut içi araçlarla ilişkili enfeksiyonlar için önemli bir sorundur. Birçok antifungal ajanın etkinliği, sitotoksisitesi ve ilaca karşı artan direnç oranı nedeniyle sınırlıdır. Son yıllarda uçucu yağlar gibi bazı doğal ürünlerin antimikrobiyal ve antibiofilm etkinliği dikkat çekticidir. Karvakrol [2-metil-5-(1-metiletil) fenol], kekikteki fenolik bileşenlerden biridir ve güçlü antimikrobiyal aktiviteye sahiptir. Şu ana kadar, klinik Candida suşlarında karvakrolün antimikrobiyal etkilerini tartışan sınırlı sayıda çalışma vardır. Çalışmamızda, karvakrolün klinik Candida izolatları üzerindeki etkilerini mikrobiyolojik ve geçirimli elektron mikroskobu yöntemleri ile araştırmak ve karvakrolün fungal hücre duvarı üzerindeki etkilerinin hifal duvar proteini olan Hwp1 proteini kullanılarak immünoelektron mikroskobik yöntemle araştırılması hedeflenmiştir. Bu çalışmada, 24 klinik izolat ve 1 referans (C. albicans ATCC 14053) kullanılmıştır. Karvakrolun minimum inhibisyon konsantrasyonu (MİK), broth mikrodilüsyon yöntemi kullanılarak belirlenmiştir. MİK sonuçları, test edilen tüm izolatlar için MİK ≤% 0.031 (hacim / hacim) göstermiştir. Geçirimli elektron mikroskobu çalışmaları için izolatlar ½ MİK konsantrasyonunda 48 saat boyunca karvakrole maruz bırakılmış ve sonuçlar kontrol ile karşılaştırılmıştır. Bulgularımıza göre, karvakrol, Candida izolatlarında çok düşük MİK değerleri ile yüksek antifungal potansiyel göstermiştir. Elektron mikroskobik olarak, MİK değerinde ve yüksek konsantrasyonlarda herhangi bir büyüme gözlenmemiştir; Hücresel hasar, alt MİK konsantrasyonlarında da belirlen miştir. Karvakrolün hücrelere geri dönüşümsüz bir hasar verdiği gösterilmiştir. Bulgularımıza göre, karvakrolün çalışılan tüm konsantrasyonlarda hücre büyümesini ya da hifal büyümeyi artırıcı etkisi olmadığını gözlemlenmiştir. İmmünogold etiketleme sonuçları, karvakrolün hücre duvarındaki etkisini gözlemlemek için kullanılmış; Karvakrol uygulanan hücrelerde immun etiketleme çok azalmış olmasına rağmen dağılmış stoplazma içerisinde de yer yer Hwp1 proteinin varlığı gözlemlenmiştir. Gelecekteki çalışmalar için Candida infeksiyonlarının topikal tedavisinde karvakrolün umut verici bir ilaç potansiyeli bulunmakta ve konu ile ilgili detaylı çalışmalara gereksinim duyulmaktadır.

References

  • [1] Silva, R. F. (2010). Fungal infections in immunocompromised patients. Jornal Brasileiro de Pneumologia, 36, 142-147.
  • [2] Sardi, J. C. O., Scorzoni, L., Bernardi, T., Fusco-Almeida, A. M., & Giannini, M. M. (2013). Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. Journal of medical microbiology, 62(1), 10-24.
  • [3] Kim, J., & Sudbery, P. (2011). Candida albicans, a major human fungal pathogen. The journal of microbiology, 49(2), 171-177.
  • [4] Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence, 4(2), 119-128.
  • [5] Marr, K. (2004). Combination antifungal therapy: where are we now, and where are we going?. Oncology (Williston Park, NY), 18(13 Suppl 7), 24-29.
  • [6] Goel, N., Rohilla, H., Singh, G., & Punia, P. (2016). Antifungal Activity of Cinnamon Oil and Olive Oil against Candida Spp. Isolated from Blood Stream Infections. Journal of clinical and diagnostic research: JCDR, 10(8), DC09.
  • [7] Öztürk, B. Y. (2019). Intracellular and extracellular green synthesis of silver nanoparticles using Desmodesmus sp.: their Antibacterial and antifungal effects. Caryologia, 72(1), 29-43.
  • [8] Öztürk, B. Y., Gürsu, B. Y., & Dağ, İ. (2020). Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochemistry, 89, 208-219.
  • [9] Öztürk, B. Y., Öztürk, D. (2020). Tilia rubra DC. ekstraktı kullanılarak gümüş nanopartikülün hücre dışı biyosentezi ve antifungal aktivitesi. Biyolojik Çeşitlilik ve Koruma, 13(3), 244-251
  • [10] Uchida, N. S., Grespan, R., Piovezan, M., Ferreira, E. C., Júnior, M. M., Cuman, R. K., & Mikcha, J. M. (2015). Effect of carvacrol on Salmonella Saintpaul biofilms on stainless steel surface. Tropical Journal of Pharmaceutical Research, 14(6), 1075-1079.
  • [11] Magi, G., Marini, E., & Facinelli, B. (2015). Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant Group A Streptococci. Frontiers in microbiology, 6, 165.
  • [12] Nobile, C. J., Nett, J. E., Andes, D. R., & Mitchell, A. P. (2006). Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryotic cell, 5(10), 1604-1610.
  • [13] Tyagi, A. K., & Malik, A. (2010). In situ SEM, TEM and AFM studies of the antimicrobial activity of lemon grass oil in liquid and vapour phase against Candida albicans. Micron, 41(7), 797-805.
  • [14] Clinical Laboratory Standards Institute. 2008. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved Standard-Third Edition. Wayne, PA: Clinical and Laboratory Standards Institute. CLSI document M27-A3.
  • [15] Yapıcı, M., Gürsu, B. Y., & Dağ, İ. (2021). In vitro antibiofilm efficacy of farnesol against Candida species. International Microbiology, 24(2), 251-262.
  • [16] Zuber, C., Fan, J., Guhl, B., & Roth, J. (2005). Applications of immunogold labeling in ultrastructural pathology. Ultrastructural Pathology, 29(3-4), 319-330.
  • [17] Achkar, J. M., & Fries, B. C. (2010). Candida infections of the genitourinary tract. Clinical microbiology reviews, 23(2), 253-273.
  • [18] Mavor, A. L., Thewes, S., & Hube, B. (2005). Systemic fungal infections caused by Candida species: epidemiology, infection process and virulence attributes. Current drug targets, 6(8), 863-874.
  • [19] Ferreira AV, Prado CG, Carvalho RR, Dias KS, Dias AL (2013) Candida albicans and Non- albicans Candida Species: comparison of biofilm production and metabolic activity in biofilms, and putative virulence properties of isolates from hospital environments and infections. Mycopathologia 175(3)265–272.
  • [20] Gursu, B. Y., Dag, İ., & Dikmen, G. (2021). Antifungal and antibiofilm efficacy of cinnamaldehyde-loaded poly (DL-lactide-co-glycolide)(PLGA) nanoparticles against Candida albicans. International Microbiology, 1-14.
  • [21] Khan, M. S. A., Malik, A., & Ahmad, I. (2012). Anti-candidal activity of essential oils alone and in combination with amphotericin B or fluconazole against multi-drug resistant isolates of Candida albicans. Medical Mycology, 50(1), 33-42.
  • [22] Mesa-Arango, A. C., Scorzoni, L., & Zaragoza, O. (2012). It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Frontiers in microbiology, 3, 286.
  • [23] Mora-Duarte, J., Betts, R., Rotstein, C., Colombo, A. L., Thompson-Moya, L., Smietana, J., ... & Perfect, J. (2002). Comparison of caspofungin and amphotericin B for invasive candidiasis. New England Journal of Medicine, 347(25), 2020-2029.
  • [24] Onyewu, C., Blankenship, J. R., Del Poeta, M., & Heitman, J. (2003). Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrobial agents and chemotherapy, 47(3), 956-964.
  • [25] Swamy, M. K., Akhtar, M. S., & Sinniah, U. R. (2016). Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evidence-based complementary and alternative medicine, 2016.
  • [26] Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12), 1451-1474.
  • [27] Ultee, A., & Smid, E. J. (2001). Influence of carvacrol on growth and toxin production by Bacillus cereus. International journal of food microbiology, 64(3), 373-378.
  • [28] Vardar-Ünlü, G., Yağmuroğlu, A., & Ünlü, M. (2010). Evaluation of in vitro activity of carvacrol against Candida albicans strains. Natural product research, 24(12), 1189-1193. [29] Manohar, V., Ingram, C., Gray, J., Talpur, N. A., Echard, B. W., Bagchi, D., & Preuss, H. G. (2001). Antifungal activities of origanum oil against Candida albicans. Molecular and cellular biochemistry, 228(1-2), 111-117.
  • [30] Chami, N., Bennis, S., Chami, F., Aboussekhra, A., & Remmal, A. (2005). Study of anticandidal activity of carvacrol and eugenol in vitro and in vivo. Oral microbiology and immunology, 20(2), 106-111.
  • [31] Lima, I. O., Pereira, F. D. O., Oliveira, W. A. D., Lima, E. D. O., Menezes, E. A., Cunha, F. A., & Diniz, M. D. F. F. M. (2013). Antifungal activity and mode of action of carvacrol against Candida albicans strains. Journal of essential oil research, 25(2), 138-142.
  • [32] Rao, A., Zhang, Y., Muend, S., & Rao, R. (2010). Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrobial agents and chemotherapy, 54(12), 5062-5069.
  • [33] Ahmad, A., Khan, A., Akhtar, F., Yousuf, S., Xess, I., Khan, L. A., & Manzoor, N. (2011). Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. European journal of clinical microbiology & infectious diseases, 30(1), 41-50.
  • [34] Chaillot, J., Tebbji, F., Remmal, A., Boone, C., Brown, G. W., Bellaoui, M., & Sellam, A. (2015). The monoterpene carvacrol generates endoplasmic reticulum stress in the pathogenic fungus Candida albicans. Antimicrobial agents and chemotherapy, 59(8), 4584-4592.
  • [35] Khodavandi, A., Harmal, N. S., Alizadeh, F., Scully, O. J., Sidik, S. M., Othman, F., ... & Chong, P. P. (2011). Comparison between allicin and fluconazole in Candida albicans biofilm inhibition and in suppression of HWP1 gene expression. Phytomedicine, 19(1), 56-63.
  • [36] Staab, J. F., Bradway, S. D., Fidel, P. L., & Sundstrom, P. (1999). Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science, 283(5407), 1535-1538.

Investigation of the antimicrobial effects of carvacrol in clinical Candida isolates and imaging by immunoelectron microscopic method

Year 2022, Volume: 15 Issue: 2, 265 - 272, 15.08.2022
https://doi.org/10.46309/biodicon.2022.1120159

Abstract

Candida species can cause superficial and systemic disease and their biofilms have become an important problem for both hospital-acquired and device-associated infections. The efficacy of many antifungal agents are limited by their cytotoxicity and increasing rate of drug-resistant. In last years, the antimicrobial and antibiofilm activity of some natural products such as essential oils have drawn attention. Carvacrol [2-methyl-5-(1-methylethyl)phenol] is one of the phenolic components of thyme and have strong antimicrobial activity. Thus far, limited reports have discussed the antimicrobial effects of carvacrol on clinical Candida strains. In our study, it was aimed to investigate the effects of carvacrol on clinical Candida isolates by microbiological and transmission electronmicroscopic methods and to investigate the effects of carvacrol on the fungal cell wall by immunoelectron microscopic method using the hyphal wall protein Hwp1 protein. In this study, 24 clinical isolates and 1 reference strain (C. albicans ATCC 14053) were used. The minimum inhibitory concentration (MIC) of carvacrol was determined using the broth microdilution method. MIC results showed a MIC ⩽ 0.031% (vol/vol) for all isolates tested. For transmission electron microscopic studies, isolates were also exposured to the carvacrol at concentration of 1⁄2 MIC for 48 hours and results were compared with the control. According to our results, carvacrol showed high antifungal potential with very low MIC values on Candida isolates. Electron microscopically, no growth was observed at the MIC value and the higher concentrations; cellular damage was also determined at sub MIC concentrations. It has been shown that carvacrol causes irreversible damage to cells. We observed that carvacrol did not increase cell growth or hyphal growth at all studied concentrations. The immunogold labeling results were used to observe the effect of carvacrol on the cell wall. Although immune labeling was greatly reduced in carvacrol treated cells, the presence of Hwp1 protein was also observed in the scattered cytoplasm. Usage of carvacrol in the topical treatment of Candida infections with further study it was determined that a potentially promising drug and detailed studies on the subject are needed.

References

  • [1] Silva, R. F. (2010). Fungal infections in immunocompromised patients. Jornal Brasileiro de Pneumologia, 36, 142-147.
  • [2] Sardi, J. C. O., Scorzoni, L., Bernardi, T., Fusco-Almeida, A. M., & Giannini, M. M. (2013). Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. Journal of medical microbiology, 62(1), 10-24.
  • [3] Kim, J., & Sudbery, P. (2011). Candida albicans, a major human fungal pathogen. The journal of microbiology, 49(2), 171-177.
  • [4] Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence, 4(2), 119-128.
  • [5] Marr, K. (2004). Combination antifungal therapy: where are we now, and where are we going?. Oncology (Williston Park, NY), 18(13 Suppl 7), 24-29.
  • [6] Goel, N., Rohilla, H., Singh, G., & Punia, P. (2016). Antifungal Activity of Cinnamon Oil and Olive Oil against Candida Spp. Isolated from Blood Stream Infections. Journal of clinical and diagnostic research: JCDR, 10(8), DC09.
  • [7] Öztürk, B. Y. (2019). Intracellular and extracellular green synthesis of silver nanoparticles using Desmodesmus sp.: their Antibacterial and antifungal effects. Caryologia, 72(1), 29-43.
  • [8] Öztürk, B. Y., Gürsu, B. Y., & Dağ, İ. (2020). Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochemistry, 89, 208-219.
  • [9] Öztürk, B. Y., Öztürk, D. (2020). Tilia rubra DC. ekstraktı kullanılarak gümüş nanopartikülün hücre dışı biyosentezi ve antifungal aktivitesi. Biyolojik Çeşitlilik ve Koruma, 13(3), 244-251
  • [10] Uchida, N. S., Grespan, R., Piovezan, M., Ferreira, E. C., Júnior, M. M., Cuman, R. K., & Mikcha, J. M. (2015). Effect of carvacrol on Salmonella Saintpaul biofilms on stainless steel surface. Tropical Journal of Pharmaceutical Research, 14(6), 1075-1079.
  • [11] Magi, G., Marini, E., & Facinelli, B. (2015). Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant Group A Streptococci. Frontiers in microbiology, 6, 165.
  • [12] Nobile, C. J., Nett, J. E., Andes, D. R., & Mitchell, A. P. (2006). Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryotic cell, 5(10), 1604-1610.
  • [13] Tyagi, A. K., & Malik, A. (2010). In situ SEM, TEM and AFM studies of the antimicrobial activity of lemon grass oil in liquid and vapour phase against Candida albicans. Micron, 41(7), 797-805.
  • [14] Clinical Laboratory Standards Institute. 2008. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved Standard-Third Edition. Wayne, PA: Clinical and Laboratory Standards Institute. CLSI document M27-A3.
  • [15] Yapıcı, M., Gürsu, B. Y., & Dağ, İ. (2021). In vitro antibiofilm efficacy of farnesol against Candida species. International Microbiology, 24(2), 251-262.
  • [16] Zuber, C., Fan, J., Guhl, B., & Roth, J. (2005). Applications of immunogold labeling in ultrastructural pathology. Ultrastructural Pathology, 29(3-4), 319-330.
  • [17] Achkar, J. M., & Fries, B. C. (2010). Candida infections of the genitourinary tract. Clinical microbiology reviews, 23(2), 253-273.
  • [18] Mavor, A. L., Thewes, S., & Hube, B. (2005). Systemic fungal infections caused by Candida species: epidemiology, infection process and virulence attributes. Current drug targets, 6(8), 863-874.
  • [19] Ferreira AV, Prado CG, Carvalho RR, Dias KS, Dias AL (2013) Candida albicans and Non- albicans Candida Species: comparison of biofilm production and metabolic activity in biofilms, and putative virulence properties of isolates from hospital environments and infections. Mycopathologia 175(3)265–272.
  • [20] Gursu, B. Y., Dag, İ., & Dikmen, G. (2021). Antifungal and antibiofilm efficacy of cinnamaldehyde-loaded poly (DL-lactide-co-glycolide)(PLGA) nanoparticles against Candida albicans. International Microbiology, 1-14.
  • [21] Khan, M. S. A., Malik, A., & Ahmad, I. (2012). Anti-candidal activity of essential oils alone and in combination with amphotericin B or fluconazole against multi-drug resistant isolates of Candida albicans. Medical Mycology, 50(1), 33-42.
  • [22] Mesa-Arango, A. C., Scorzoni, L., & Zaragoza, O. (2012). It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Frontiers in microbiology, 3, 286.
  • [23] Mora-Duarte, J., Betts, R., Rotstein, C., Colombo, A. L., Thompson-Moya, L., Smietana, J., ... & Perfect, J. (2002). Comparison of caspofungin and amphotericin B for invasive candidiasis. New England Journal of Medicine, 347(25), 2020-2029.
  • [24] Onyewu, C., Blankenship, J. R., Del Poeta, M., & Heitman, J. (2003). Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrobial agents and chemotherapy, 47(3), 956-964.
  • [25] Swamy, M. K., Akhtar, M. S., & Sinniah, U. R. (2016). Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evidence-based complementary and alternative medicine, 2016.
  • [26] Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12), 1451-1474.
  • [27] Ultee, A., & Smid, E. J. (2001). Influence of carvacrol on growth and toxin production by Bacillus cereus. International journal of food microbiology, 64(3), 373-378.
  • [28] Vardar-Ünlü, G., Yağmuroğlu, A., & Ünlü, M. (2010). Evaluation of in vitro activity of carvacrol against Candida albicans strains. Natural product research, 24(12), 1189-1193. [29] Manohar, V., Ingram, C., Gray, J., Talpur, N. A., Echard, B. W., Bagchi, D., & Preuss, H. G. (2001). Antifungal activities of origanum oil against Candida albicans. Molecular and cellular biochemistry, 228(1-2), 111-117.
  • [30] Chami, N., Bennis, S., Chami, F., Aboussekhra, A., & Remmal, A. (2005). Study of anticandidal activity of carvacrol and eugenol in vitro and in vivo. Oral microbiology and immunology, 20(2), 106-111.
  • [31] Lima, I. O., Pereira, F. D. O., Oliveira, W. A. D., Lima, E. D. O., Menezes, E. A., Cunha, F. A., & Diniz, M. D. F. F. M. (2013). Antifungal activity and mode of action of carvacrol against Candida albicans strains. Journal of essential oil research, 25(2), 138-142.
  • [32] Rao, A., Zhang, Y., Muend, S., & Rao, R. (2010). Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrobial agents and chemotherapy, 54(12), 5062-5069.
  • [33] Ahmad, A., Khan, A., Akhtar, F., Yousuf, S., Xess, I., Khan, L. A., & Manzoor, N. (2011). Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. European journal of clinical microbiology & infectious diseases, 30(1), 41-50.
  • [34] Chaillot, J., Tebbji, F., Remmal, A., Boone, C., Brown, G. W., Bellaoui, M., & Sellam, A. (2015). The monoterpene carvacrol generates endoplasmic reticulum stress in the pathogenic fungus Candida albicans. Antimicrobial agents and chemotherapy, 59(8), 4584-4592.
  • [35] Khodavandi, A., Harmal, N. S., Alizadeh, F., Scully, O. J., Sidik, S. M., Othman, F., ... & Chong, P. P. (2011). Comparison between allicin and fluconazole in Candida albicans biofilm inhibition and in suppression of HWP1 gene expression. Phytomedicine, 19(1), 56-63.
  • [36] Staab, J. F., Bradway, S. D., Fidel, P. L., & Sundstrom, P. (1999). Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science, 283(5407), 1535-1538.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Conservation and Biodiversity
Journal Section Research Articles
Authors

Bükay Yenice Gürsu 0000-0002-6822-3484

Early Pub Date August 3, 2022
Publication Date August 15, 2022
Submission Date May 23, 2022
Acceptance Date July 29, 2022
Published in Issue Year 2022 Volume: 15 Issue: 2

Cite

APA Yenice Gürsu, B. (2022). Klinik Candida izolatlarında karvakrolün antimikrobiyal etkilerinin araştırılması ve immunoelektron mikroskobik yöntem ile görüntülenmesi. Biological Diversity and Conservation, 15(2), 265-272. https://doi.org/10.46309/biodicon.2022.1120159

❖  Abstracted-Indexed in
Web of Science {Additional Web of Science Indexes: Zoological Records Indexed] Clavariate Analytic, Medical Reads (RRS), CrossRef;10.46309/biodicon.

❖ Libraries
Aberystwyth University; All libraries; Bath University; Birmingham University; Cardiff University; City University London; CONSER (Not UK Holdings); Edinburgh University; Essex University; Exeter University; Eskişehir Technical University Library; EZB Electronic Journals Library; Feng Chia University Library; GAZİ Gazi University Library; Glasgow University; HEC-National Digital Library; Hull University; Imperial College London; Kaohsinug Medical University Library; ANKOS; Anadolu University Library; Lancaster University; Libros PDF; Liverpool University; London Metropolitan University; London School of Economics and Political Science; Manchester University; National Cheng Kung University Library; National ILAN University Library; Nottingham University; Open University; Oxford University; Queen Mary,University of London;Robert Gordon University; Royal Botanic Gardens, Kew; Sheffield Hallam University; Sheffield University; Shih Hsin University Library; Smithsonian Institution Libraries; Southampton University; Stirling University; Strathclyde University; Sussex University; The National Agricultural Library (NAL); The Ohio Library and Information NetWork; Trinity College Dublin; University of Washington Libraries; Vaughan Memorial Library; York University..

❖ The article processing is free.

❖ Web of Science {Additional Web of Science Indexes: Zoological Records Indexed] Clavariate Analytic
❖ This journal is a CrossRef;10.46309/biodicon. member

❖ Please visit ” http:// www.biodicon.com“ ; "https://dergipark.org.tr/en/pub/biodicon"   for instructions about articles and all of the details about journal


❖  Correspondance Adres: Prof. Ersin YÜCEL, Sazova Mahallesi, Ziraat Caddesi, No.277 F Blok, 26005 Tepebaşı-Eskişehir/Türkiye
E-posta / E-mail: biodicon@gmail.com;
Web Address: http://www.biodicon.com;   https://dergipark.org.tr/en/pub/biodicon
❖ Biological Diversity and Conservation/ Biyolojik Çeşitlilik ve Koruma
❖ ISSN 1308-5301 Print; ISSN 1308-8084 Online
❖ Start Date Published 2008
© Copyright by Biological Diversity and Conservation/Biyolojik Çeşitlilik ve Koruma-Available online at www.biodicon.com/All rights reserved
Publisher : ERSİN YÜCEL (https://www.ersinyucel.com.tr/)
❖ This journal is published three numbers in a year. Printed in Eskişehir/Türkiye.
❖ All sorts of responsibilities of the articles published in this journal are belonging to the authors
Editör / Editor-In-Chief : Prof.Dr. Ersin YÜCEL, https://orcid.org/0000-0001-8274-7578