Araştırma Makalesi
BibTex RIS Kaynak Göster

Calculation of biodiversity parameters of epigean Hexapoda species in different anise (Pimpinella anisum L.) and fennel (Foeniculum vulgare Mill.) agro-ecosystems in Burdur Province

Yıl 2022, Cilt: 15 Sayı: 3, 385 - 391, 15.12.2022
https://doi.org/10.46309/biodicon.2022.1198394

Öz

This study was carried out to compare the biodiversity parameters of epigean insect species in 3 different regions with different geographical conditions. Tefenni Plain, Beyköy (Abdülmelik) Plain and Çaylı Mountain Village, which are located at 3 different altitudes, were chosen as the study area. Pitfall traps were placed in agro-ecosystems of anise and fennel in each region and epigean insect species caught with pitfall traps were checked weekly. A total of 2086 individuals belonging to 117 epigean insect species, mostly from the carabid family, were sampled. The highest number of individuals were sampled in Tf and Ta with 841 and 440, respectively. The results of Shannon-Wiener diversity were found to be the highest in Ta with 2.7893 while the lowest was found in Ca with 2.1775. Similar to Shannon-Wiener diversity results, Simpson diversity results were calculated as highest in Ta with 0.9196 and lowest in Ca with 0.7813. Simpson's dominance results determined that Ca was the highest dominant agro-ecosystem with 0.2187. The second and third most dominant agro-ecosystems were found to be Tf and Cf with 0.1847, 0.1635, respectively. According to both Shannon and Simpson Evenness; the population densities of epigean species living in Bf and Ba were found to be more balanced than in other agro-ecosystems. The percentage similarity analysis shows that the regions selected in different altitudes were more similar to each other than the plants of the same species.
Contrary to expectations, it was observed that epigean insect species did not show distribution according to plant pattern and were not directly related to plants. It is thought that the epigean insect species sampled are affected by the altitude difference

Destekleyen Kurum

Research Fund of the Isparta University of Applied Sciences

Proje Numarası

2021 YL1-0147

Teşekkür

This work was supported by Research Fund of the Isparta University of Applied Sciences. Project Number: 2021 YL1-0147.

Kaynakça

  • Abudulai, M., Nboyine, J. A., Quandahor, P., Seidu, A., & Traore, F. (2022). Agricultural Intensification Causes Decline in Insect Biodiversity. In (Ed.), Global Decline of Insects. IntechOpen. https://doi.org/10.5772/intechopen.101360
  • Arndt E., Aydın N., Aydın G. (2005). Tourism impairs tiger beetle Cicindeldae populations a case studyin a Mediterranean beach habitat. Journal of Insect Conservation, 9(3), 201-206., Doi: 10.1007/S10841-005-6609-9
  • Aydın G. (2011). Plant-Insect Interaction in Biological Diversity: Agro-ecosystems, Natural and Semi-Natural Habitats. Süleyman Demirel University Journal of Natural and Applied Sciences, 15 (3), 178-185.
  • Aydın, G. (2021a). Comparison of Insect Biological Diversity Parameters in Natural and Degraded Habitats in Gölcük Nature Park Forest (Isparta, Turkey). Turkish Journal of Forestry, 22(4), 362-365
  • Aydın G. (2021b). What’s Difference Between Faunistic and Biodiversity Studies? Journal of Biosystems Engineering. 2(2), 110-118
  • Aydın, G. (2022). An Alternative Agriculture Method Versus Conventional Agriculture that have Negative Effects on Protected Areas: Organic Agriculture. E. Arabacı (Ed.), Science and Engineering Studies: Multidisciplinary Evaluations (p. 1-8). Klaipeda: SRA Academic Publishing
  • Aydın G. & Demir Ü. (2020). Investigation of Antropogenic Effect on Insect Biological Diversity in Antalya Kurşunlu Waterfall Natural Park. Turkish Journal of Forestry, 21(4), 349-354.
  • Aydın G. & Karaca İ. (2018). The Effects of pesticide application on biological diversity of ground beetle (Ceoloptera: Carabidae). Fresenius Environmental Bulletin, 27(12), 9112-9118
  • Aydın G. & Kazak C. (2007). Evaluation of insect as bio-indicators for human activities in biotopes of Çukurova Delta (Adana). Turkish Journal of Entomology, 31(2), 111-128.
  • Aydın G. & Kazak C. (2010). Selecting Indicator Species Habitat Description and Sustainable Land Utilization: A Case Study in a Mediterranean Delta. International Journal of Agriculture Biology, 12(6), 931-934
  • Aydın G., Şekeroğlu E. & Arndt E. (2005). Tiger beetles as bioindicators of habitat degradation in the Çukurova Delta Southern Turkey. Zoology in the Middle East, 36(1), 51-58., Doi: 10.1080/09397140.2005.10638127
  • Aydın G. & Şen İ. (2020). Determination of arthropod biodiversity and some ecological parameters of Erdal Şekeroğlu (Isparta, Turkey) and Kadıini (Antalya, Turkey) cave ecosystems with evaluation of usability of insects in cave mapping. Turkish Journal of Entomology, 44(4), 539-557.
  • Ballal, C.R., Sreedevi, K., Salini, S., Gupta, A., Amala, U., Varshney, R. (2022). Biodiversity of Agriculturally Important Insects: Status, Issues, and Challenges. In: Kaur, S., Batish, D., Singh, H., Kohli, R. (eds) Biodiversity in India: Status, Issues and Challenges. Springer, Singapore, https://doi.org/10.1007/978-981-16-9777-7_12
  • Beckers V., Poelmans L., Van Rompaey A. & Dendoncker N. (2020). The impact of urbanization on agricultural dynamics: a case study in Belgium. Journal of Land Use Science, 15:5, 626-643. DOI:10.1080/1747423X.2020.1769211
  • Blowes, S.A., Daskalova, G.N., Dornelas, M., Engel, T., Gotelli, N.J., Magurran, A.E., Martins, I.S., McGill B., McGlinn, D.J., Sagouis A., Shimadzu, H., Supp, S.R., Chase, J.M. (2022). Local biodiversity change reflects interactions among changing abundance, evenness, and richness, Ecology, 10.1002/ecy.3820.
  • Fransson, E., & Tekla, T. (2022). Exploring the biodiversity of aquatic insects in wetlands near conventional and organic agriculture areas: A descriptive pilot study with field- and laboratory work conducted in rice crop areas in the southern Brazilian Pampas biome. A study with aquatic insects used as bioindicators together with water parameters, to discuss future sustainable agriculture and the Agenda 2030 goals (Dissertation). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-46908
  • Heimann, D. (2004). EvenDiv 1.1. Based on a DBase Program Code Supplied by Jörg Perner and Martin Schnitter. Institute of Ecology, University of Jena.
  • Karmakar, P., Mishra, A., Borah, C., Deka, A. (2022). Diversity and spatial distribution of butterflies in different macrohabitat of North East India. Int J Trop Insect Sci., https://doi.org/10.1007/s42690-022-00885-5
  • Kovach, W. L. (1999), A Multi variate Statistical Package. United Kingdom: Kovach Computing Services.
  • Krebs, C. J. (1999), Ecological Methodology. An Imprint of Addison Wesley Longman, Inc., 620 p.
  • Magurran, A. E. (1988), Ecological Diversity and Its Measurement. Princeton University Press., 179 p.
  • Magurran, A. E. (2004), Measuring Biological Diversity. Blackwell Science Ltd., 256 p.
  • Markl, G., Hinneberg, H. and Tarmann, G. (2022). Drastic decline of extensive grassland species in Central Europe since 1950: Forester moths of the genus Jordanita (Lepidoptera, Zygaenidae) as a type example. Ecology and Evolution, 12(9), e9291. https://doi.org/10.1002/ece3.9291
  • Marschalek, D.A & Deutschman, D.H. (2022). Differing insect communities and reduced decomposition rates suggest compromised ecosystem functioning in urban preserves of southern California. Global Ecology and Conservation, 33, e01996, ISSN 2351-9894,https://doi.org/10.1016/j.gecco.2021.e01996.
  • New, T.R., (1998), Invertebrate Surveys for Conservation. Oxford University Press. 240 p.
  • Oğuz G., Aydın G. & Ulusoy M.R. (2021). Balcalı (Adana)’Da Farklı Ekosistemlerde Yaşamını Toprak Yüzeyinde Sürdüren Epigean Hexapoda Türlerinin Biyolojik Çeşitlik Parametrelerinin Karşılaştırılması. Türk Bilim ve Mühendislik Dergisi, 3(2), 69-76.
  • Ortaç, Ö. D., Yaşar B. & Aydın G. (2015). Organik ve Konvansiyonel Yağ Gülü Rosa damascena Miller Rosales Rosaceae Yetiştirilen Alanlarda Böcek Biyolojik Çeşitlilik Değerlerinin Karşılaştırılması Isparta Örneği. Fen Bilimleri Enstitüsü Dergisi, 19(2), 161-173
  • Outhwaite, C.L., McCann, P. & Newbold, T. (2022). Agriculture and climate change are reshaping insect biodiversity worldwide. Nature, 605, 97-102, https://doi.org/10.1038/s41586-022-04644-x
  • Ríos-Touma, B., Villamarín, C., Jijón, G., Checa, J., Granda-Albuja, G., Bonifaz, E. & Guerrero-Latorre, L. (2022). Aquatic biodiversity loss in Andean urban streams. Urban Ecosyst, https://doi.org/10.1007/s11252-022-01248-1
  • Ruchin, A.B. & Egorov, L.V. (2022a). Vertical Stratification and Seasonal Dynamics of Coleoptera in Open Biotopes of Forest Ecosystems (Centre of European Russia). Forest, 13(7), 1014. https://doi.org/10.3390/f13071014
  • Ruchin A.B, Egorov L.V, Khapugin A.A. (2022b) Vertical Distribution of Beetles (Coleoptera) in Pine Forests in Central European Russia. Diversity, 14(8), 622. https://doi.org/10.3390/d14080622
  • Silay S., Aydın G., Karaca İ. (2021). Isparta İli Elma Bahçelerinde Çukur Tuzak Örnekleme Yöntemi İle Yakalanan Carabidae Familyasına Ait Biyoçeşitlilik Parametrelerinin Hesaplanması. Türk Bilim ve Mühendislik Dergisi, 3(1), 50-56.
  • Soler, R., Benítez, J., Sola, F., Lencinas, M.V. (2022). Biodiversity Islands at the World’s Southernmost City: Plant, Bird and Insect Conservation in Urban Forests and Peatlands of Ushuaia, Argentina. In: Montagnini, F. (eds) Biodiversity Islands: Strategies for Conservation in Human-Dominated Environments. Topics in Biodiversity and Conservation, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-92234-4_16.
  • Storch, D., Šímová, I., Smyčka, J., Bohdalková, E., Toszogyova, A., Okie, J.G. (2022). Biodiversity dynamics in the anthropocene: how human activities change equilibria of species richness. Ecography, 4, pp. 1-19.

Burdur İli farklı anason (Pimpinella anisum L.) ve rezene (Foeniculum vulgare Mill.) agro- ekosistemlerinde epigean Hexapoda türlerinin biyolojik çeşitlilik parametrelerinin hesaplanması

Yıl 2022, Cilt: 15 Sayı: 3, 385 - 391, 15.12.2022
https://doi.org/10.46309/biodicon.2022.1198394

Öz

Bu çalışma farklı coğrafik koşullarda bulunan 3 farklı bölgede epigean böcek türlerinin biyolojik çeşitlilik parametrelerinin karşılaştırılması amacıyla 2022 yılında yapılmıştır. Çalışma alanı olarak 3 farklı rakımda yer alan Tefenni Plain, Beyköy (Abdülmelik) Plain and Çaylı Mountain Village seçilmiştir. Her bölgede anason ve rezenenin olduğu agro-ekosistemlere çukur tuzaklar yerleştirilmiş ve çukur tuzaklarla yakalanan epigean böcek türleri haftalık olarak kontrol edilmiştir. Çoğu Carabidae familyasından olmak üzere toplam 117 epigean böcek türene ait 2086 birey örneklenmiştir. En yüksek sayıda birey sırasıyla 841 ve 440 ile Tf ve Ta'da örneklenmiştir. Shannon-Wiener çeşitliliğinin sonuçları 2,7893 ile en yüksek Ta'da, en düşük ise 2,1775 ile Ca'da bulunmuştur. Shannon-Wiener çeşitlilik sonuçlarına benzer şekilde, Simpson çeşitlilik sonuçları da 0.9196 ile en yüksek Ta'da ve 0.7813 ile en düşük Ca'da hesaplanmıştır. Simpson'ın dominantlık sonuçları, Ca'nın 0.2187 ile en yüksek domiantlığa sahip agro-ekosistem olduğunu belirlemiştir. En dominant ikinci ve üçüncü agro-ekosistemler ise sırasıyla 0,1847, 0,1635 ile Tf ve Cf olarak bulunmuştur. Hem Shannon'a hem de Simpson Evenness'e göre; Bf ve Ba'da yaşayan epigean türlerinin popülasyon yoğunluklarının diğer tarımsal ekosistemlere göre daha dengeli olduğu görülmüştür. Yüzde benzerlik analizi farklı coğrafi koşullarda seçilen bölgelerin birbirlerine aynı tür bitkilerin birbirine benzemelerinden daha çok benzediklerini göstermektedir.
Beklenenin aksine epigean böcek türlerinin bitki desenine göre dağılım göstermedikleri ve bitkilerle doğrudan ilişkili olmadıkları görülmüştür. Örneklenen epigean böcek türlerinin rakım farkından etkilendikleri düşünülmektedir

Proje Numarası

2021 YL1-0147

Kaynakça

  • Abudulai, M., Nboyine, J. A., Quandahor, P., Seidu, A., & Traore, F. (2022). Agricultural Intensification Causes Decline in Insect Biodiversity. In (Ed.), Global Decline of Insects. IntechOpen. https://doi.org/10.5772/intechopen.101360
  • Arndt E., Aydın N., Aydın G. (2005). Tourism impairs tiger beetle Cicindeldae populations a case studyin a Mediterranean beach habitat. Journal of Insect Conservation, 9(3), 201-206., Doi: 10.1007/S10841-005-6609-9
  • Aydın G. (2011). Plant-Insect Interaction in Biological Diversity: Agro-ecosystems, Natural and Semi-Natural Habitats. Süleyman Demirel University Journal of Natural and Applied Sciences, 15 (3), 178-185.
  • Aydın, G. (2021a). Comparison of Insect Biological Diversity Parameters in Natural and Degraded Habitats in Gölcük Nature Park Forest (Isparta, Turkey). Turkish Journal of Forestry, 22(4), 362-365
  • Aydın G. (2021b). What’s Difference Between Faunistic and Biodiversity Studies? Journal of Biosystems Engineering. 2(2), 110-118
  • Aydın, G. (2022). An Alternative Agriculture Method Versus Conventional Agriculture that have Negative Effects on Protected Areas: Organic Agriculture. E. Arabacı (Ed.), Science and Engineering Studies: Multidisciplinary Evaluations (p. 1-8). Klaipeda: SRA Academic Publishing
  • Aydın G. & Demir Ü. (2020). Investigation of Antropogenic Effect on Insect Biological Diversity in Antalya Kurşunlu Waterfall Natural Park. Turkish Journal of Forestry, 21(4), 349-354.
  • Aydın G. & Karaca İ. (2018). The Effects of pesticide application on biological diversity of ground beetle (Ceoloptera: Carabidae). Fresenius Environmental Bulletin, 27(12), 9112-9118
  • Aydın G. & Kazak C. (2007). Evaluation of insect as bio-indicators for human activities in biotopes of Çukurova Delta (Adana). Turkish Journal of Entomology, 31(2), 111-128.
  • Aydın G. & Kazak C. (2010). Selecting Indicator Species Habitat Description and Sustainable Land Utilization: A Case Study in a Mediterranean Delta. International Journal of Agriculture Biology, 12(6), 931-934
  • Aydın G., Şekeroğlu E. & Arndt E. (2005). Tiger beetles as bioindicators of habitat degradation in the Çukurova Delta Southern Turkey. Zoology in the Middle East, 36(1), 51-58., Doi: 10.1080/09397140.2005.10638127
  • Aydın G. & Şen İ. (2020). Determination of arthropod biodiversity and some ecological parameters of Erdal Şekeroğlu (Isparta, Turkey) and Kadıini (Antalya, Turkey) cave ecosystems with evaluation of usability of insects in cave mapping. Turkish Journal of Entomology, 44(4), 539-557.
  • Ballal, C.R., Sreedevi, K., Salini, S., Gupta, A., Amala, U., Varshney, R. (2022). Biodiversity of Agriculturally Important Insects: Status, Issues, and Challenges. In: Kaur, S., Batish, D., Singh, H., Kohli, R. (eds) Biodiversity in India: Status, Issues and Challenges. Springer, Singapore, https://doi.org/10.1007/978-981-16-9777-7_12
  • Beckers V., Poelmans L., Van Rompaey A. & Dendoncker N. (2020). The impact of urbanization on agricultural dynamics: a case study in Belgium. Journal of Land Use Science, 15:5, 626-643. DOI:10.1080/1747423X.2020.1769211
  • Blowes, S.A., Daskalova, G.N., Dornelas, M., Engel, T., Gotelli, N.J., Magurran, A.E., Martins, I.S., McGill B., McGlinn, D.J., Sagouis A., Shimadzu, H., Supp, S.R., Chase, J.M. (2022). Local biodiversity change reflects interactions among changing abundance, evenness, and richness, Ecology, 10.1002/ecy.3820.
  • Fransson, E., & Tekla, T. (2022). Exploring the biodiversity of aquatic insects in wetlands near conventional and organic agriculture areas: A descriptive pilot study with field- and laboratory work conducted in rice crop areas in the southern Brazilian Pampas biome. A study with aquatic insects used as bioindicators together with water parameters, to discuss future sustainable agriculture and the Agenda 2030 goals (Dissertation). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-46908
  • Heimann, D. (2004). EvenDiv 1.1. Based on a DBase Program Code Supplied by Jörg Perner and Martin Schnitter. Institute of Ecology, University of Jena.
  • Karmakar, P., Mishra, A., Borah, C., Deka, A. (2022). Diversity and spatial distribution of butterflies in different macrohabitat of North East India. Int J Trop Insect Sci., https://doi.org/10.1007/s42690-022-00885-5
  • Kovach, W. L. (1999), A Multi variate Statistical Package. United Kingdom: Kovach Computing Services.
  • Krebs, C. J. (1999), Ecological Methodology. An Imprint of Addison Wesley Longman, Inc., 620 p.
  • Magurran, A. E. (1988), Ecological Diversity and Its Measurement. Princeton University Press., 179 p.
  • Magurran, A. E. (2004), Measuring Biological Diversity. Blackwell Science Ltd., 256 p.
  • Markl, G., Hinneberg, H. and Tarmann, G. (2022). Drastic decline of extensive grassland species in Central Europe since 1950: Forester moths of the genus Jordanita (Lepidoptera, Zygaenidae) as a type example. Ecology and Evolution, 12(9), e9291. https://doi.org/10.1002/ece3.9291
  • Marschalek, D.A & Deutschman, D.H. (2022). Differing insect communities and reduced decomposition rates suggest compromised ecosystem functioning in urban preserves of southern California. Global Ecology and Conservation, 33, e01996, ISSN 2351-9894,https://doi.org/10.1016/j.gecco.2021.e01996.
  • New, T.R., (1998), Invertebrate Surveys for Conservation. Oxford University Press. 240 p.
  • Oğuz G., Aydın G. & Ulusoy M.R. (2021). Balcalı (Adana)’Da Farklı Ekosistemlerde Yaşamını Toprak Yüzeyinde Sürdüren Epigean Hexapoda Türlerinin Biyolojik Çeşitlik Parametrelerinin Karşılaştırılması. Türk Bilim ve Mühendislik Dergisi, 3(2), 69-76.
  • Ortaç, Ö. D., Yaşar B. & Aydın G. (2015). Organik ve Konvansiyonel Yağ Gülü Rosa damascena Miller Rosales Rosaceae Yetiştirilen Alanlarda Böcek Biyolojik Çeşitlilik Değerlerinin Karşılaştırılması Isparta Örneği. Fen Bilimleri Enstitüsü Dergisi, 19(2), 161-173
  • Outhwaite, C.L., McCann, P. & Newbold, T. (2022). Agriculture and climate change are reshaping insect biodiversity worldwide. Nature, 605, 97-102, https://doi.org/10.1038/s41586-022-04644-x
  • Ríos-Touma, B., Villamarín, C., Jijón, G., Checa, J., Granda-Albuja, G., Bonifaz, E. & Guerrero-Latorre, L. (2022). Aquatic biodiversity loss in Andean urban streams. Urban Ecosyst, https://doi.org/10.1007/s11252-022-01248-1
  • Ruchin, A.B. & Egorov, L.V. (2022a). Vertical Stratification and Seasonal Dynamics of Coleoptera in Open Biotopes of Forest Ecosystems (Centre of European Russia). Forest, 13(7), 1014. https://doi.org/10.3390/f13071014
  • Ruchin A.B, Egorov L.V, Khapugin A.A. (2022b) Vertical Distribution of Beetles (Coleoptera) in Pine Forests in Central European Russia. Diversity, 14(8), 622. https://doi.org/10.3390/d14080622
  • Silay S., Aydın G., Karaca İ. (2021). Isparta İli Elma Bahçelerinde Çukur Tuzak Örnekleme Yöntemi İle Yakalanan Carabidae Familyasına Ait Biyoçeşitlilik Parametrelerinin Hesaplanması. Türk Bilim ve Mühendislik Dergisi, 3(1), 50-56.
  • Soler, R., Benítez, J., Sola, F., Lencinas, M.V. (2022). Biodiversity Islands at the World’s Southernmost City: Plant, Bird and Insect Conservation in Urban Forests and Peatlands of Ushuaia, Argentina. In: Montagnini, F. (eds) Biodiversity Islands: Strategies for Conservation in Human-Dominated Environments. Topics in Biodiversity and Conservation, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-92234-4_16.
  • Storch, D., Šímová, I., Smyčka, J., Bohdalková, E., Toszogyova, A., Okie, J.G. (2022). Biodiversity dynamics in the anthropocene: how human activities change equilibria of species richness. Ecography, 4, pp. 1-19.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Koruma ve Biyolojik Çeşitlilik
Bölüm Araştırma Makaleleri
Yazarlar

Şükrü Erden Ergene 0000-0002-1606-344X

Gökhan Aydın 0000-0003-2301-5195

Proje Numarası 2021 YL1-0147
Erken Görünüm Tarihi 16 Aralık 2022
Yayımlanma Tarihi 15 Aralık 2022
Gönderilme Tarihi 2 Kasım 2022
Kabul Tarihi 3 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 15 Sayı: 3

Kaynak Göster

APA Ergene, Ş. E., & Aydın, G. (2022). Calculation of biodiversity parameters of epigean Hexapoda species in different anise (Pimpinella anisum L.) and fennel (Foeniculum vulgare Mill.) agro-ecosystems in Burdur Province. Biyolojik Çeşitlilik Ve Koruma, 15(3), 385-391. https://doi.org/10.46309/biodicon.2022.1198394

18385183861838718388183892276122760