Research Article
BibTex RIS Cite

An expert system for honeybee species identification and information retrieval

Year 2025, Volume: 18 Issue: 1, 1 - 12
https://doi.org/10.46309/biodicon.2025.1515641

Abstract

Detecting honeybee species is important for ecological and agricultural research, as it helps researchers understand their behavior, population, movement pattern, and pollination habits. The paper proposes a honey bee Identification system categorizing five subspecies: Apis Cerena Indica, Apis Mellifera, Apis Florea, Apis Dorsata, and Trigona. Input images of honeybees are preprocessed to improve quality and eliminate any noise. Data augmentation methods are used to increase the dataset size, ensuring effective model training. The VGG16 architecture, known for its success in image recognition tasks, is utilized to identify important features from the dataset. Further, Rectified Linear Unit (ReLU) and Softmax layers are added, increasing the model's efficiency. The support Vector Machine model is trained to classify 5 classes of honey bees. After training the model, accurate predictions of different honeybee species with high levels of precision and recall are made. These results prove that the system effectively identifies 5 subspecies of honeybees. This system performs exceptionally well in species classification, providing advancements in ecological and agricultural studies, by implementing VGG16 and SVM.

References

  • [1] Patel, V., Pauli, N., Biggs, E., Barbour, L., & Boruff, B. (2020). Why bees are critical for achieving sustainable development. Ambio, 50(1), 49–59. https://doi.org/10.1007/s13280-020-01333-9
  • [2] De Nart, D., Costa, C., Di Prisco, G., & Carpana, E. (2022). Image recognition using convolutional neural networks for classification of honey bee subspecies. Apidologie, 53(1). https://doi.org/10.1007/s13592-022-00918-5
  • [3] Figueroa-Mata, G., Mata-Montero, E., Valverde-Otarola, J. C., & Arias-Aguilar, D. (2018). Automated Image-based Identification of Forest Species: Challenges and Opportunities for 21st Century Xylotheques. https://doi.org/10.1109/iwobi.2018.8464206
  • [4] Kviesis, A., & Zacepins, A. (2016). Application of neural networks for honey bee colony state identification. https://doi.org/10.1109/carpathiancc.2016.7501133
  • [5] Chen, C., Yang, E. C., Jiang, J. A., & Lin, T. T. (2012). An imaging system for monitoring the in-and-out activity of honey bees. Computers and Electronics in Agriculture, 89, 100–109. https://doi.org/10.1016/j.compag.2012.08.006
  • [6] Ngo, T. N., Wu, K. C., Yang, E. C., & Lin, T. T. (2019). A real-time imaging system for multiple honey bee tracking and activity monitoring. Computers and Electronics in Agriculture, 163, 104841. https://doi.org/10.1016/j.compag.2019.05.050
  • [7] Libal, U., & Biernacki, P. (2024). MFCC Selection by LASSO for Honey Bee Classification. Applied Sciences, 14(2), 913. https://doi.org/10.3390/app14020913
  • [8] Spiesman, B. J., Gratton, C., Hatfield, R. G., Hsu, W. H., Jepsen, S., McCornack, B., Patel, K., & Wang, G. (2021). Assessing the potential for deep learning and computer vision to identify bumble bee species from images. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-87210-1
  • [9] Nawrocka, A., Kandemir, R., Fuchs, S., & Tofilski, A. (2017). Computer software for identification of honey bee subspecies and evolutionary lineages. Apidologie. https://doi.org/10.1007/s13592-017-0538-y
  • [10] Fan, N. J., Zhou, N. N., Peng, N. J., & Gao, N. L. (2015). Hierarchical Learning of Tree Classifiers for Large-Scale Plant Species Identification. IEEE Transactions on Image Processing, 24(11), 4172–4184. https://doi.org/10.1109/tip.2015.2457337
  • [11] Karaboga, D., & Kaya, E. (2018). Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey. Artificial Intelligence Review, 52(4), 2263–2293. https://doi.org/10.1007/s10462-017-9610-2
  • [12] Figueroa-Mata, G., & Mata-Montero, E. (2020). Using a Convolutional Siamese Network for Image-Based Plant Species Identification with Small Datasets. Biomimetics, 5(1), 8. https://doi.org/10.3390/biomimetics5010008
  • [13] Li, L., & Hong, J. (2014, August). Identification of fish species based on image processing and statistical analysis research. In 2014 IEEE International Conference on Mechatronics and Automation (pp. 1155-1160). IEEE. DOI: 10.1109/ICMA.2014.6885861
  • [14] Buschbacher, K., Ahrens, D., Espeland, M., & Steinhage, V. (2020). Image-based species identification of wild bees using convolutional neural networks. Ecological Informatics, 55, 101017. https://doi.org/10.1016/j.ecoinf.2019.101017
  • [15] Kelley, W., Valova, I., Bell, D., Ameh, O., & Bader, J. (2021). Honey sources: neural network approach to bee species classification. Procedia Computer Science, 192, 650–657. https://doi.org/10.1016/j.procs.2021.08.067
  • [16] Karthiga M; Sountharrajan S; Nandhini S S; Suganya E; Sankaranath S. (2021). A Deep Learning Approach to classify the Honeybee Species and health Identification. https://doi.org/10.1109/icbsii51839.2021.9445173
  • [17] Rodriguez, I. F., Megret, R., Acuna, E., Agosto-Rivera, J. L., & Giray, T. (2018). Recognition of Pollen-Bearing Bees from Video Using Convolutional Neural Network. https://doi.org/10.1109/wacv.2018.00041
  • [18] Berkaya, S. K., Gunal, E. S., & Gunal, S. (2021). Deep learning-based classification models for beehive monitoring. Ecological Informatics, 64, 101353. https://doi.org/10.1016/j.ecoinf.2021.101353
  • [19] Braga, D., Madureira, A., Scotti, F., Piuri, V., & Abraham, A. (2021). An Intelligent Monitoring System for Assessing Bee Hive Health. IEEE Access, 9, 89009–89019. https://doi.org/10.1109/access.2021.3089538
  • [20] Sledevic, T. (2018). The Application of Convolutional Neural Network for Pollen Bearing Bee Classification. https://doi.org/10.1109/aieee.2018.8592464
  • [21] Woyke, J. (1998, March). Differences in body colour expression between European and Asian honeybees. In Proceeding of Fourth Asian Apicultural Association International Conference (pp. 23-28).
  • [22] Bubnič, J., & Prešern, J. (2024). Quantifying Abdominal Coloration of Worker Honey Bees. Insects, 15(4), 213. https://doi.org/10.3390/insects15040213
  • [23] Dar, S. A., & Ahmad, S. B. (2017). Morphometric variations and expression of body colour pattern of honeybee, Apis cerana F. in Kashmir. Journal of Entomology and Zoology Studies, 5(4), 364–371. https://www.entomoljournal.com/archives/2017/vol5issue4/PartE/5-3-129-616.pdf
  • [24] Bhuiyan, Tanvir, Ryan M. Carney, and Sriram Chellappan. "Artificial intelligence versus natural selection: Using computer vision techniques to classify bees and bee mimics." Iscience 25, no. 9 (2022). DOI: 10.1016/j.isci.2022.104924
  • [25] Kekeçoğlu, Meral, Merve Kambur, Münir Uçak, Tuğçe Çaprazlı, and Songül Bir. "Biodiversity of honey bees (Apis mellifera L.) in Turkey by geometric morphometric analysis." Biological Diversity and Conservation 13, no. 3 (2020): 282-289. nhttps://doi.org/10.46309/biodicon.2020.773984

Bal arısı türlerinin tespiti ve bilgi erişimi için uzman sistem

Year 2025, Volume: 18 Issue: 1, 1 - 12
https://doi.org/10.46309/biodicon.2025.1515641

Abstract

Bal arısı türlerinin tespit edilmesi, araştırmacıların davranışlarını, popülasyonlarını, hareket şekillerini ve tozlaşma alışkanlıklarını anlamalarına yardımcı olduğundan ekolojik ve tarımsal araştırmalar için önemlidir. Makale, beş alt türü kategorize eden bir bal arısı Tanımlama sistemi önermektedir: Apis Cerena Indica, Apis Mellifera, Apis Florea, Apis Dorsata ve Trigona. Bal arılarının girdi görüntüleri, kaliteyi artırmak ve gürültüyü ortadan kaldırmak için önceden işlenir. Veri kümesi boyutunu artırmak ve etkili model eğitimi sağlamak için veri büyütme yöntemleri kullanılır. Görüntü tanıma görevlerindeki başarısıyla bilinen VGG16 mimarisi, veri kümesinden önemli özelliklerin tanımlanmasında kullanılıyor. Ayrıca, Düzeltilmiş Doğrusal Birim (ReLU) ve Softmax katmanları eklenerek modelin verimliliği artırılıyor. Destek Vektör Makinesi modeli, 5 sınıf bal arısını sınıflandırmak için eğitilmiştir. Model eğitildikten sonra farklı bal arısı türlerine ilişkin yüksek hassasiyet ve geri çağırma ile doğru tahminler yapılır. Bu sonuçlar, sistemin bal arılarının 5 alt türünü etkili bir şekilde tanımladığını kanıtlıyor. Bu sistem, VGG16 ve SVM'yi uygulayarak ekolojik ve tarımsal çalışmalarda ilerlemeler sağlayarak tür sınıflandırmasında olağanüstü iyi performans gösterir.

References

  • [1] Patel, V., Pauli, N., Biggs, E., Barbour, L., & Boruff, B. (2020). Why bees are critical for achieving sustainable development. Ambio, 50(1), 49–59. https://doi.org/10.1007/s13280-020-01333-9
  • [2] De Nart, D., Costa, C., Di Prisco, G., & Carpana, E. (2022). Image recognition using convolutional neural networks for classification of honey bee subspecies. Apidologie, 53(1). https://doi.org/10.1007/s13592-022-00918-5
  • [3] Figueroa-Mata, G., Mata-Montero, E., Valverde-Otarola, J. C., & Arias-Aguilar, D. (2018). Automated Image-based Identification of Forest Species: Challenges and Opportunities for 21st Century Xylotheques. https://doi.org/10.1109/iwobi.2018.8464206
  • [4] Kviesis, A., & Zacepins, A. (2016). Application of neural networks for honey bee colony state identification. https://doi.org/10.1109/carpathiancc.2016.7501133
  • [5] Chen, C., Yang, E. C., Jiang, J. A., & Lin, T. T. (2012). An imaging system for monitoring the in-and-out activity of honey bees. Computers and Electronics in Agriculture, 89, 100–109. https://doi.org/10.1016/j.compag.2012.08.006
  • [6] Ngo, T. N., Wu, K. C., Yang, E. C., & Lin, T. T. (2019). A real-time imaging system for multiple honey bee tracking and activity monitoring. Computers and Electronics in Agriculture, 163, 104841. https://doi.org/10.1016/j.compag.2019.05.050
  • [7] Libal, U., & Biernacki, P. (2024). MFCC Selection by LASSO for Honey Bee Classification. Applied Sciences, 14(2), 913. https://doi.org/10.3390/app14020913
  • [8] Spiesman, B. J., Gratton, C., Hatfield, R. G., Hsu, W. H., Jepsen, S., McCornack, B., Patel, K., & Wang, G. (2021). Assessing the potential for deep learning and computer vision to identify bumble bee species from images. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-87210-1
  • [9] Nawrocka, A., Kandemir, R., Fuchs, S., & Tofilski, A. (2017). Computer software for identification of honey bee subspecies and evolutionary lineages. Apidologie. https://doi.org/10.1007/s13592-017-0538-y
  • [10] Fan, N. J., Zhou, N. N., Peng, N. J., & Gao, N. L. (2015). Hierarchical Learning of Tree Classifiers for Large-Scale Plant Species Identification. IEEE Transactions on Image Processing, 24(11), 4172–4184. https://doi.org/10.1109/tip.2015.2457337
  • [11] Karaboga, D., & Kaya, E. (2018). Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey. Artificial Intelligence Review, 52(4), 2263–2293. https://doi.org/10.1007/s10462-017-9610-2
  • [12] Figueroa-Mata, G., & Mata-Montero, E. (2020). Using a Convolutional Siamese Network for Image-Based Plant Species Identification with Small Datasets. Biomimetics, 5(1), 8. https://doi.org/10.3390/biomimetics5010008
  • [13] Li, L., & Hong, J. (2014, August). Identification of fish species based on image processing and statistical analysis research. In 2014 IEEE International Conference on Mechatronics and Automation (pp. 1155-1160). IEEE. DOI: 10.1109/ICMA.2014.6885861
  • [14] Buschbacher, K., Ahrens, D., Espeland, M., & Steinhage, V. (2020). Image-based species identification of wild bees using convolutional neural networks. Ecological Informatics, 55, 101017. https://doi.org/10.1016/j.ecoinf.2019.101017
  • [15] Kelley, W., Valova, I., Bell, D., Ameh, O., & Bader, J. (2021). Honey sources: neural network approach to bee species classification. Procedia Computer Science, 192, 650–657. https://doi.org/10.1016/j.procs.2021.08.067
  • [16] Karthiga M; Sountharrajan S; Nandhini S S; Suganya E; Sankaranath S. (2021). A Deep Learning Approach to classify the Honeybee Species and health Identification. https://doi.org/10.1109/icbsii51839.2021.9445173
  • [17] Rodriguez, I. F., Megret, R., Acuna, E., Agosto-Rivera, J. L., & Giray, T. (2018). Recognition of Pollen-Bearing Bees from Video Using Convolutional Neural Network. https://doi.org/10.1109/wacv.2018.00041
  • [18] Berkaya, S. K., Gunal, E. S., & Gunal, S. (2021). Deep learning-based classification models for beehive monitoring. Ecological Informatics, 64, 101353. https://doi.org/10.1016/j.ecoinf.2021.101353
  • [19] Braga, D., Madureira, A., Scotti, F., Piuri, V., & Abraham, A. (2021). An Intelligent Monitoring System for Assessing Bee Hive Health. IEEE Access, 9, 89009–89019. https://doi.org/10.1109/access.2021.3089538
  • [20] Sledevic, T. (2018). The Application of Convolutional Neural Network for Pollen Bearing Bee Classification. https://doi.org/10.1109/aieee.2018.8592464
  • [21] Woyke, J. (1998, March). Differences in body colour expression between European and Asian honeybees. In Proceeding of Fourth Asian Apicultural Association International Conference (pp. 23-28).
  • [22] Bubnič, J., & Prešern, J. (2024). Quantifying Abdominal Coloration of Worker Honey Bees. Insects, 15(4), 213. https://doi.org/10.3390/insects15040213
  • [23] Dar, S. A., & Ahmad, S. B. (2017). Morphometric variations and expression of body colour pattern of honeybee, Apis cerana F. in Kashmir. Journal of Entomology and Zoology Studies, 5(4), 364–371. https://www.entomoljournal.com/archives/2017/vol5issue4/PartE/5-3-129-616.pdf
  • [24] Bhuiyan, Tanvir, Ryan M. Carney, and Sriram Chellappan. "Artificial intelligence versus natural selection: Using computer vision techniques to classify bees and bee mimics." Iscience 25, no. 9 (2022). DOI: 10.1016/j.isci.2022.104924
  • [25] Kekeçoğlu, Meral, Merve Kambur, Münir Uçak, Tuğçe Çaprazlı, and Songül Bir. "Biodiversity of honey bees (Apis mellifera L.) in Turkey by geometric morphometric analysis." Biological Diversity and Conservation 13, no. 3 (2020): 282-289. nhttps://doi.org/10.46309/biodicon.2020.773984
There are 25 citations in total.

Details

Primary Language English
Subjects Natural Resource Management, Biosystem
Journal Section Research Articles
Authors

Swati Shilaskar 0000-0002-1450-2939

Shripad Bhatlawande 0000-0001-8405-9824

Shafaque Sheikh 0009-0004-0082-5851

Sahil Salve 0009-0000-5085-2234

Tayyab Shaikh 0009-0008-3927-2261

Early Pub Date February 24, 2025
Publication Date
Submission Date July 13, 2024
Acceptance Date October 28, 2024
Published in Issue Year 2025 Volume: 18 Issue: 1

Cite

APA Shilaskar, S., Bhatlawande, S., Sheikh, S., Salve, S., et al. (2025). An expert system for honeybee species identification and information retrieval. Biological Diversity and Conservation, 18(1), 1-12. https://doi.org/10.46309/biodicon.2025.1515641

❖  Abstracted-Indexed in
Web of Science {Additional Web of Science Indexes: Zoological Records Indexed] Clavariate Analytic, Medical Reads (RRS), CrossRef;10.46309/biodicon.

❖ Libraries
Aberystwyth University; All libraries; Bath University; Birmingham University; Cardiff University; City University London; CONSER (Not UK Holdings); Edinburgh University; Essex University; Exeter University; Eskişehir Technical University Library; EZB Electronic Journals Library; Feng Chia University Library; GAZİ Gazi University Library; Glasgow University; HEC-National Digital Library; Hull University; Imperial College London; Kaohsinug Medical University Library; ANKOS; Anadolu University Library; Lancaster University; Libros PDF; Liverpool University; London Metropolitan University; London School of Economics and Political Science; Manchester University; National Cheng Kung University Library; National ILAN University Library; Nottingham University; Open University; Oxford University; Queen Mary,University of London;Robert Gordon University; Royal Botanic Gardens, Kew; Sheffield Hallam University; Sheffield University; Shih Hsin University Library; Smithsonian Institution Libraries; Southampton University; Stirling University; Strathclyde University; Sussex University; The National Agricultural Library (NAL); The Ohio Library and Information NetWork; Trinity College Dublin; University of Washington Libraries; Vaughan Memorial Library; York University..

❖ The article processing is free.

❖ Web of Science {Additional Web of Science Indexes: Zoological Records Indexed] Clavariate Analytic
❖ This journal is a CrossRef;10.46309/biodicon. member

❖ Please visit ” http:// www.biodicon.com“ ; "https://dergipark.org.tr/en/pub/biodicon"   for instructions about articles and all of the details about journal


❖  Correspondance Adres: Prof. Ersin YÜCEL, Sazova Mahallesi, Ziraat Caddesi, No.277 F Blok, 26005 Tepebaşı-Eskişehir/Türkiye
E-posta / E-mail: biodicon@gmail.com;
Web Address: http://www.biodicon.com;   https://dergipark.org.tr/en/pub/biodicon
❖ Biological Diversity and Conservation/ Biyolojik Çeşitlilik ve Koruma
❖ ISSN 1308-5301 Print; ISSN 1308-8084 Online
❖ Start Date Published 2008
© Copyright by Biological Diversity and Conservation/Biyolojik Çeşitlilik ve Koruma-Available online at www.biodicon.com/All rights reserved
Publisher : ERSİN YÜCEL (https://www.ersinyucel.com.tr/)
❖ This journal is published three numbers in a year. Printed in Eskişehir/Türkiye.
❖ All sorts of responsibilities of the articles published in this journal are belonging to the authors
Editör / Editor-In-Chief : Prof.Dr. Ersin YÜCEL, https://orcid.org/0000-0001-8274-7578