Research Article
BibTex RIS Cite

Optik Mikroskopi ve Derin Öğrenme Kullanılarak Kepek Katmanından Buğday Tohumlarının Tanımlanması

Year 2025, Volume: 18 Issue: 3, 349 - 352
https://doi.org/10.46309/biodicon.2025.1656264

Abstract

Özet

Tohum analizi ve sınıflandırması, ekimden önce kullanılacak tohumların çeşitlerinin belirlenmesi ve ekim yapılacak alana uygun çeşitlerin kullanıldığının doğrulanması açısından son derece önemlidir. Ekim yapılan tarımsal alanlarda yüksek verimlilik ile birlikte kaliteli ve saf tohumların elde edilebilmesi ancak ekim öncesi uygulanacak analiz ve sınıflandırma ile mümkün olabilmektedir. Bu çalışmada farklı kalitelerdeki dokuz buğday çeşidine ait tohumları sınıflandırılarak ekimden önce tohumların çeşitlerini belirleyecek bir sistem oluşturulması amaçlanmıştır. Çalışmanın temel hedefleri, bilgisayar destekli akıllı sistemler kullanarak tahıl ürünlerini otomatik olarak tanımlamak ve ekilecek bölgenin ekolojik koşullarına en uygun buğday tohumlarını belirlemektir. Bu amaçla, incelenen buğday çeşitlerinin tohum kesitleri ışık mikroskobu ile fotoğraflanarak özel bir veri seti oluşturulmuş ve yüzeysel ile derin mimariler kullanılarak CNN tabanlı bir otomatik buğday tanımlama çerçevesi önerilmiştir. En iyi sonuçlar %97,67 test doğruluğu, %90,03 duyarlılık, %98,79 özgüllük, %90,50 hassasiyet ve %90,06 f1-skoru olarak elde edilmiştir. Deneyler, CNN tabanlı yöntemlerin buğday kepeğinin ayırt edici özelliklerini çıkarmada ve buğday tohumlarını tanımlamada başarılı olduğunu göstermektedir.

Anahtar kelimeler: buğday;sınıflandırma;optik mikroskopi;derin öğrenme;tohum analizi

References

  • [1] Arslan, A., Aygun, Y. Z., Turkmen, M., Celiktas, N., & Mert, M. (2025). Combining non-destructive devices and multivariate analysis as a tool to quantify the fatty acid profiles of linseed genotypes. Talanta, 281, 126798. doi:https://doi.org/10.1016/j.talanta.2024.126798
  • [2] Bao, Y., Mi, C., Wu, N., Liu, F., & He, Y. (2019). Rapid Classification of Wheat Grain Varieties Using Hyperspectral Imaging and Chemometrics. Applied Sciences, 9(19), 4119. doi:https://doi.org/10.3390/app9194119
  • [3] Charytanowicz, M., Kulczycki, P., Kowalski, P. A., Łukasik, S., & Czabak-Garbacz, R. (2018). An evaluation of utilizing geometric features for wheat grain classification using X-ray images. Computers and Electronics in Agriculture, 144, 260-268. doi:https://doi.org/10.1016/j.compag.2017.12.004
  • [4] Diederichsen, A., & Raney, J. P. (2006). Seed colour, seed weight and seed oil content in Linum usitatissimum accessions held by Plant Gene Resources of Canada. Plant Breeding, 125(4), 372-377. doi:https://doi.org/10.1111/j.1439-0523.2006.01231.x
  • [5] Rahman, A., & Cho, B.-K. (2016). Assessment of seed quality using non-destructive measurement techniques: a review. Seed Science Research, 26(4), 285-305. doi:https://10.1017/S0960258516000234
  • [6] Wang, Q. G., Zhu, Q. B., Qin, J., & Huang, G. (2015). Review of seed quality and safety tests using optical sensing technologies. Seed Science and Technology, 43, 1-30. doi:https://doi.org/10.15258/sst.2015.43.3.16
  • [7] Olgun, M., Köse, A., Belen, S., Karaduman, Y., Budak Başçiftçi, Z., Ayter Arpacıoğlu, N. G., & Turan, M. (2024). Characterization of whole seeds lipids, extracted lipids composition in bread wheat (T.aestivum L.) genotypes grown in Eskisehir province in Türkiye. Biological Diversity and Conservation, 17(2), 175-189. doi:https://doi.org/10.46309/biodicon.2024.1394551
  • [8] Moss, R. (1973). Conditioning studies on Australian wheat. II. Morphology of wheat and its relationship to conditioning. Journal of the Science of Food and Agriculture, 24(9), 1067-1076. doi:https://doi.org/10.1002/jsfa.2740240908
  • [9] Chen, Z., Mense, A. L., Brewer, L. R., & Shi, Y. C. (2024). Wheat bran layers: composition, structure, fractionation, and potential uses in foods. Crit Rev Food Sci Nutr, 64(19), 6636-6659. doi:https://doi.org/10.1080/10408398.2023.2171962
  • [10] Saidani, S., Zairi, M., Meziani, S., Labga, L., Tiboura, G., Menadi, N., & Demmouche, A. (2022). Bioactive Compounds and Antioxidant Activity of Peripheral Layers of Soft Wheat Grown in Algeria During Seed Filling. Food and Environment Safety Journal, 21. doi:https://doi.org/10.4316/fens.2022.009
  • [11] Deniz, E., & Serttaş, S. (2023). Disease detection in bean leaves using deep learning. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 65(2), 115-129. doi:https://doi.org/10.33769/aupse.1247233
  • [12] Özkan, K., Seke, E., & Işık, Ş. (2021). Wheat kernels classification using visible-near infrared camera based on deep learning. Pamukkale University Journal of Engineering Sciences, 27(5), 618-626. doi:https://dx.doi.org/10.5505/pajes.2020.80774
  • [13] Laabassi, K., Belarbi, M. A., Mahmoudi, S., Mahmoudi, S. A., & Ferhat, K. (2021). Wheat varieties identification based on a deep learning approach. Journal of the Saudi Society of Agricultural Sciences, 20(5), 281-289. doi:https://doi.org/10.1016/j.jssas.2021.02.008
  • [14] Lingwal, S., Bhatia, K., & Tomer, M. (2021). Image-based wheat grain classification using convolutional neural network. Multimedia Tools and Applications, 80, 1-25. doi:https://doi.org/10.1007/s11042-020-10174-3
  • [15] Anagun, Y., Isik, S., Olgun, M., Sezer, O., Basciftci, Z. B., & Arpacioglu, N. G. A. (2023). The classification of wheat species based on deep convolutional neural networks using scanning electron microscope (SEM) imaging. European Food Research and Technology, 249(4), 1023-1034. doi:https://doi.org/10.1007/s00217-022-04192-8
  • [16] Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. Paper presented at the 3rd International Conference on Learning Representations (ICLR 2015).
  • [17] Huang, G., Liu, Z., Maaten, L. V. D., & Weinberger, K. Q. (2017, 21-26 July 2017). Densely Connected Convolutional Networks. Paper presented at the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  • [18] He, K., Zhang, X., Ren, S., & Sun, J. (2016, 27-30 June 2016). Deep Residual Learning for Image Recognition. Paper presented at the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  • [19] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018, 18-23 June 2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. Paper presented at the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
  • [20] Tan, M., & Le, Q. V. (2019, 9-15 June 2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Paper presented at the 36th International Conference on Machine Learning (ICML 2019), Long Beach.
  • [21] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., . . . Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211-252. doi:https://doi.org/10.1007/s11263-015-0816-y
  • [22] Khojastehnazhand, M., & Roostaei, M. (2022). Classification of seven Iranian wheat varieties using texture features. Expert Systems with Applications, 199, 117014. doi:https://doi.org/10.1016/j.eswa.2022.117014
  • [23] Ünlerşen, M., Sönmez, M., Aslan, M., Demir, B., Aydin, N., Sabanci, K., & Ropelewska, E. (2022). CNN-SVM hybrid model for varietal classification of wheat based on bulk samples. European Food Research and Technology, 248. doi:https://doi.org/10.1007/s00217-022-04029-4
  • [24] Yasar, A. (2022). Benchmarking analysis of CNN models for bread wheat varieties. European Food Research and Technology, 249. doi:https://doi.org/10.1007/s00217-022-04172-y [25] Agarwal, D., Sweta, & Bachan, P. (2023). Machine learning approach for the classification of wheat grains. Smart Agricultural Technology, 3, 100136. doi:https://doi.org/10.1016/j.atech.2022.100136

Identification of wheat seeds from bran layer using optical microscopy and deep learning

Year 2025, Volume: 18 Issue: 3, 349 - 352
https://doi.org/10.46309/biodicon.2025.1656264

Abstract

Purpose: This study aims to automate the identification of grain varieties and select the most suitable wheat genotypes for specific ecological conditions using Artificial Intelligence (AI)-based systems. The goal is to facilitate high-yield and high-quality production through pre-sowing analysis.
Method: Seeds from nine wheat genotypes with different qualities were used, and cross-sections of the wheat genotypes were photographed under a light microscope to create a specialized dataset. A Convolutional Neural Network (CNN)-based automated wheat identification framework was then proposed, utilizing both shallow and deep architectures.
Findings: The experiments confirm that CNN-based methods are highly effective in extracting distinctive features from wheat bran and accurately identifying wheat seed varieties.
Conclusion: The research successfully distinguished nine varieties and found that a simpler model (ResNet18) outperformed deeper networks, offering a practical solution for agricultural verification.

Keywords: wheat;classification;optical microscopy;deep learning;seed analysis

References

  • [1] Arslan, A., Aygun, Y. Z., Turkmen, M., Celiktas, N., & Mert, M. (2025). Combining non-destructive devices and multivariate analysis as a tool to quantify the fatty acid profiles of linseed genotypes. Talanta, 281, 126798. doi:https://doi.org/10.1016/j.talanta.2024.126798
  • [2] Bao, Y., Mi, C., Wu, N., Liu, F., & He, Y. (2019). Rapid Classification of Wheat Grain Varieties Using Hyperspectral Imaging and Chemometrics. Applied Sciences, 9(19), 4119. doi:https://doi.org/10.3390/app9194119
  • [3] Charytanowicz, M., Kulczycki, P., Kowalski, P. A., Łukasik, S., & Czabak-Garbacz, R. (2018). An evaluation of utilizing geometric features for wheat grain classification using X-ray images. Computers and Electronics in Agriculture, 144, 260-268. doi:https://doi.org/10.1016/j.compag.2017.12.004
  • [4] Diederichsen, A., & Raney, J. P. (2006). Seed colour, seed weight and seed oil content in Linum usitatissimum accessions held by Plant Gene Resources of Canada. Plant Breeding, 125(4), 372-377. doi:https://doi.org/10.1111/j.1439-0523.2006.01231.x
  • [5] Rahman, A., & Cho, B.-K. (2016). Assessment of seed quality using non-destructive measurement techniques: a review. Seed Science Research, 26(4), 285-305. doi:https://10.1017/S0960258516000234
  • [6] Wang, Q. G., Zhu, Q. B., Qin, J., & Huang, G. (2015). Review of seed quality and safety tests using optical sensing technologies. Seed Science and Technology, 43, 1-30. doi:https://doi.org/10.15258/sst.2015.43.3.16
  • [7] Olgun, M., Köse, A., Belen, S., Karaduman, Y., Budak Başçiftçi, Z., Ayter Arpacıoğlu, N. G., & Turan, M. (2024). Characterization of whole seeds lipids, extracted lipids composition in bread wheat (T.aestivum L.) genotypes grown in Eskisehir province in Türkiye. Biological Diversity and Conservation, 17(2), 175-189. doi:https://doi.org/10.46309/biodicon.2024.1394551
  • [8] Moss, R. (1973). Conditioning studies on Australian wheat. II. Morphology of wheat and its relationship to conditioning. Journal of the Science of Food and Agriculture, 24(9), 1067-1076. doi:https://doi.org/10.1002/jsfa.2740240908
  • [9] Chen, Z., Mense, A. L., Brewer, L. R., & Shi, Y. C. (2024). Wheat bran layers: composition, structure, fractionation, and potential uses in foods. Crit Rev Food Sci Nutr, 64(19), 6636-6659. doi:https://doi.org/10.1080/10408398.2023.2171962
  • [10] Saidani, S., Zairi, M., Meziani, S., Labga, L., Tiboura, G., Menadi, N., & Demmouche, A. (2022). Bioactive Compounds and Antioxidant Activity of Peripheral Layers of Soft Wheat Grown in Algeria During Seed Filling. Food and Environment Safety Journal, 21. doi:https://doi.org/10.4316/fens.2022.009
  • [11] Deniz, E., & Serttaş, S. (2023). Disease detection in bean leaves using deep learning. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 65(2), 115-129. doi:https://doi.org/10.33769/aupse.1247233
  • [12] Özkan, K., Seke, E., & Işık, Ş. (2021). Wheat kernels classification using visible-near infrared camera based on deep learning. Pamukkale University Journal of Engineering Sciences, 27(5), 618-626. doi:https://dx.doi.org/10.5505/pajes.2020.80774
  • [13] Laabassi, K., Belarbi, M. A., Mahmoudi, S., Mahmoudi, S. A., & Ferhat, K. (2021). Wheat varieties identification based on a deep learning approach. Journal of the Saudi Society of Agricultural Sciences, 20(5), 281-289. doi:https://doi.org/10.1016/j.jssas.2021.02.008
  • [14] Lingwal, S., Bhatia, K., & Tomer, M. (2021). Image-based wheat grain classification using convolutional neural network. Multimedia Tools and Applications, 80, 1-25. doi:https://doi.org/10.1007/s11042-020-10174-3
  • [15] Anagun, Y., Isik, S., Olgun, M., Sezer, O., Basciftci, Z. B., & Arpacioglu, N. G. A. (2023). The classification of wheat species based on deep convolutional neural networks using scanning electron microscope (SEM) imaging. European Food Research and Technology, 249(4), 1023-1034. doi:https://doi.org/10.1007/s00217-022-04192-8
  • [16] Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. Paper presented at the 3rd International Conference on Learning Representations (ICLR 2015).
  • [17] Huang, G., Liu, Z., Maaten, L. V. D., & Weinberger, K. Q. (2017, 21-26 July 2017). Densely Connected Convolutional Networks. Paper presented at the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  • [18] He, K., Zhang, X., Ren, S., & Sun, J. (2016, 27-30 June 2016). Deep Residual Learning for Image Recognition. Paper presented at the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  • [19] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018, 18-23 June 2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. Paper presented at the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
  • [20] Tan, M., & Le, Q. V. (2019, 9-15 June 2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Paper presented at the 36th International Conference on Machine Learning (ICML 2019), Long Beach.
  • [21] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., . . . Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211-252. doi:https://doi.org/10.1007/s11263-015-0816-y
  • [22] Khojastehnazhand, M., & Roostaei, M. (2022). Classification of seven Iranian wheat varieties using texture features. Expert Systems with Applications, 199, 117014. doi:https://doi.org/10.1016/j.eswa.2022.117014
  • [23] Ünlerşen, M., Sönmez, M., Aslan, M., Demir, B., Aydin, N., Sabanci, K., & Ropelewska, E. (2022). CNN-SVM hybrid model for varietal classification of wheat based on bulk samples. European Food Research and Technology, 248. doi:https://doi.org/10.1007/s00217-022-04029-4
  • [24] Yasar, A. (2022). Benchmarking analysis of CNN models for bread wheat varieties. European Food Research and Technology, 249. doi:https://doi.org/10.1007/s00217-022-04172-y [25] Agarwal, D., Sweta, & Bachan, P. (2023). Machine learning approach for the classification of wheat grains. Smart Agricultural Technology, 3, 100136. doi:https://doi.org/10.1016/j.atech.2022.100136
There are 24 citations in total.

Details

Primary Language English
Subjects Botany (Other)
Journal Section Research Articles
Authors

Yıldıray Anagün 0000-0002-7743-0709

Şahin Işık 0000-0003-1768-7104

Murat Olgun 0000-0001-6981-4545

Okan Sezer 0000-0001-7304-1346

Early Pub Date September 25, 2025
Publication Date October 1, 2025
Submission Date March 13, 2025
Acceptance Date September 23, 2025
Published in Issue Year 2025 Volume: 18 Issue: 3

Cite

APA Anagün, Y., Işık, Ş., Olgun, M., Sezer, O. (2025). Identification of wheat seeds from bran layer using optical microscopy and deep learning. Biological Diversity and Conservation, 18(3), 349-352. https://doi.org/10.46309/biodicon.2025.1656264

❖  Indexes
{Additional Web of Science Indexes: Zoological Record] Clavariate Analytic, Medical Reads (RRS), CrossRef;10.46309/biodicon.

❖  Libraries
Aberystwyth University; All libraries; Bath University; Birmingham University; Cardiff University; City University London; CONSER (Not UK Holdings); Edinburgh University; Essex University; Eskişehir Teknik Üniversitesi Library, Exeter University; EZB Electronic Journals Library; Feng Chia University Library; GAZİ Gazi University Library; Glasgow University; HEC-National Digital Library; Hull University; Imperial College London; Kaohsinug Medical University Library; ANKOS; Anadolu University Library; Lancaster University; Libros PDF; Liverpool University; London Metropolitan University; London School of Economics and Political Science; Manchester University; National Cheng Kung University Library; National ILAN University Library; Nottingham University; Open University; Oxford University; Queen Mary,University of London;Robert Gordon University; Royal Botanic Gardens, Kew; Sheffield Hallam University; Sheffield University; Shih Hsin University Library; Smithsonian Institution Libraries; Southampton University; Stirling University; Strathclyde University; Sussex University; The National Agricultural Library (NAL); The Ohio Library and Information NetWork; Trinity College Dublin; University of Washington Libraries; Vaughan Memorial Library; York University.

❖ Articles published in the journal “Biological Diversity and Conservation” are freely accessible. No article processing charge (APC) is charged.

❖ Additional Web of Science Indexes: Zoological Record, Clavariate Analytic
❖ This journal is a member of CrossRef;10.46309/biodicon.
❖ For published articles and full details about the journal, please visit http://www.biodicon.com; https://dergipark.org.tr/tr/yayin/biodicon.


❖  Correspondence Address:: Prof. Ersin YÜCEL, Sazova Mahallesi, Ziraat Caddesi, No.277 F Blok, 26005 Tepebaşı-Eskişehir/Türkiye
E-mail: biodicon@gmail.com;
❖ Web Address: http://www.biodicon.com;  https://dergipark.org.tr/tr/pub/biodicon
❖ Biological Diversity and Conservation
❖ ISSN 1308-5301 Print; ISSN 1308-8084 Online
Publication Start Date 2008
© Copyright by Biological Diversity and Conservation/Biyolojik Çeşitlilik ve Koruma;  Available online at www.biodicon.com. All rights reserved.
. ❖ Publisher: ERSİN YÜCEL (https://www.ersinyucel.com.tr)
❖ This Journal is published three times a year. It is printed in Eskişehir, Türkiye.
❖ The authors are solely responsible for the articles published in this Journal .
Editör  : Prof.Dr. Ersin YÜCEL, https://orcid.org/0000-0001-8274-7578