Özet
Tohum analizi ve sınıflandırması, ekimden önce kullanılacak tohumların çeşitlerinin belirlenmesi ve ekim yapılacak alana uygun çeşitlerin kullanıldığının doğrulanması açısından son derece önemlidir. Ekim yapılan tarımsal alanlarda yüksek verimlilik ile birlikte kaliteli ve saf tohumların elde edilebilmesi ancak ekim öncesi uygulanacak analiz ve sınıflandırma ile mümkün olabilmektedir. Bu çalışmada farklı kalitelerdeki dokuz buğday çeşidine ait tohumları sınıflandırılarak ekimden önce tohumların çeşitlerini belirleyecek bir sistem oluşturulması amaçlanmıştır. Çalışmanın temel hedefleri, bilgisayar destekli akıllı sistemler kullanarak tahıl ürünlerini otomatik olarak tanımlamak ve ekilecek bölgenin ekolojik koşullarına en uygun buğday tohumlarını belirlemektir. Bu amaçla, incelenen buğday çeşitlerinin tohum kesitleri ışık mikroskobu ile fotoğraflanarak özel bir veri seti oluşturulmuş ve yüzeysel ile derin mimariler kullanılarak CNN tabanlı bir otomatik buğday tanımlama çerçevesi önerilmiştir. En iyi sonuçlar %97,67 test doğruluğu, %90,03 duyarlılık, %98,79 özgüllük, %90,50 hassasiyet ve %90,06 f1-skoru olarak elde edilmiştir. Deneyler, CNN tabanlı yöntemlerin buğday kepeğinin ayırt edici özelliklerini çıkarmada ve buğday tohumlarını tanımlamada başarılı olduğunu göstermektedir.
Anahtar kelimeler: buğday;sınıflandırma;optik mikroskopi;derin öğrenme;tohum analizi
Purpose: This study aims to automate the identification of grain varieties and select the most suitable wheat genotypes for specific ecological conditions using Artificial Intelligence (AI)-based systems. The goal is to facilitate high-yield and high-quality production through pre-sowing analysis.
Method: Seeds from nine wheat genotypes with different qualities were used, and cross-sections of the wheat genotypes were photographed under a light microscope to create a specialized dataset. A Convolutional Neural Network (CNN)-based automated wheat identification framework was then proposed, utilizing both shallow and deep architectures.
Findings: The experiments confirm that CNN-based methods are highly effective in extracting distinctive features from wheat bran and accurately identifying wheat seed varieties.
Conclusion: The research successfully distinguished nine varieties and found that a simpler model (ResNet18) outperformed deeper networks, offering a practical solution for agricultural verification.
Keywords: wheat;classification;optical microscopy;deep learning;seed analysis
Primary Language | English |
---|---|
Subjects | Botany (Other) |
Journal Section | Research Articles |
Authors | |
Early Pub Date | September 25, 2025 |
Publication Date | October 1, 2025 |
Submission Date | March 13, 2025 |
Acceptance Date | September 23, 2025 |
Published in Issue | Year 2025 Volume: 18 Issue: 3 |
❖ Indexes
{Additional Web of Science Indexes: Zoological Record] Clavariate Analytic, Medical Reads (RRS), CrossRef;10.46309/biodicon.
❖ Libraries
Aberystwyth University; All libraries; Bath University; Birmingham University; Cardiff University; City University London; CONSER (Not UK Holdings); Edinburgh University; Essex University; Eskişehir Teknik Üniversitesi Library, Exeter University; EZB Electronic Journals Library; Feng Chia University Library; GAZİ Gazi University Library; Glasgow University; HEC-National Digital Library; Hull University; Imperial College London; Kaohsinug Medical University Library; ANKOS; Anadolu University Library; Lancaster University; Libros PDF; Liverpool University; London Metropolitan University; London School of Economics and Political Science; Manchester University; National Cheng Kung University Library; National ILAN University Library; Nottingham University; Open University; Oxford University; Queen Mary,University of London;Robert Gordon University; Royal Botanic Gardens, Kew; Sheffield Hallam University; Sheffield University; Shih Hsin University Library; Smithsonian Institution Libraries; Southampton University; Stirling University; Strathclyde University; Sussex University; The National Agricultural Library (NAL); The Ohio Library and Information NetWork; Trinity College Dublin; University of Washington Libraries; Vaughan Memorial Library; York University.
❖ Articles published in the journal “Biological Diversity and Conservation” are freely accessible. No article processing charge (APC) is charged.
❖ Additional Web of Science Indexes: Zoological Record, Clavariate Analytic
❖ This journal is a member of CrossRef;10.46309/biodicon.
❖ For published articles and full details about the journal, please visit http://www.biodicon.com; https://dergipark.org.tr/tr/yayin/biodicon.
❖ Correspondence Address:: Prof. Ersin YÜCEL, Sazova Mahallesi, Ziraat Caddesi, No.277 F Blok, 26005 Tepebaşı-Eskişehir/Türkiye
❖ E-mail: biodicon@gmail.com;
❖ Web Address: http://www.biodicon.com; https://dergipark.org.tr/tr/pub/biodicon
❖ Biological Diversity and Conservation
❖ ISSN 1308-5301 Print; ISSN 1308-8084 Online
❖ Publication Start Date 2008
❖ © Copyright by Biological Diversity and Conservation/Biyolojik Çeşitlilik ve Koruma; Available online at www.biodicon.com. All rights reserved.
. ❖ Publisher: ERSİN YÜCEL (https://www.ersinyucel.com.tr)
❖ This Journal is published three times a year. It is printed in Eskişehir, Türkiye.
❖ The authors are solely responsible for the articles published in this Journal .
❖ Editör : Prof.Dr. Ersin YÜCEL, https://orcid.org/0000-0001-8274-7578