Transcriptional and Proliferative Heterogeneity Among Leukemia Cell Lines: A Baseline Characterization of Epigenetic and DNA-Repair Pathways
Year 2025,
Issue: 1, 11 - 21, 30.12.2025
Ecmel Mehmetbeyoğlu Duman
,
Ayse Uz
,
Sudenur Sancak
,
Mai R. S. Abusalim
,
Venhar Çınar
,
Serpil Taheri
Abstract
Leukemia comprises biologically diverse hematologic malignancies with subtype-specific molecular characteristics that influence disease behavior and therapeutic response. To establish baseline transcriptional and proliferative profiles across representative leukemia models, we quantified the expression of TRDMT1 (DNMT2), RAD51, TET2, and XPA in six leukemia cell lines (ARH-77, CCRF-SB, HL-60, K-562, Kasumi-1, SUP-T1) and assessed their growth dynamics over a 96-hour period. qPCR analysis revealed significant differences in the baseline expression of all four genes among cell lines. ARH-77 showed the highest expression levels for each gene, while HL-60 and K-562 generally displayed lower expression. Growth assays demonstrated variable proliferation rates, with SUP-T1 and CCRF-SB exhibiting the greatest increases in cell number. To contextualize these findings within clinical disease patterns, expression of the same genes was examined in hematologic malignancies using the BloodSpot dataset (GSE13159). Public transcriptomic data demonstrated heterogeneous subtype-dependent expression ranges for TRDMT1, RAD51, TET2, and XPA, and these patterns aligned with the variability observed across the leukemia cell lines. Together, these results provide a comparative molecular and phenotypic baseline for commonly used leukemia models and establish a reference framework for subsequent functional and therapeutic studies.
Ethical Statement
This study does not require ethics committee approval.
Supporting Institution
This project funded by Health Institutes of Türkiye (TUSEB) with the project code 2025-A4-01-43829.
Project Number
This project funded by Health Institutes of Türkiye (TUSEB) with the project code 2025-A4-01-43829.
Thanks
We thank to Dr. Mustafa Burak Acar for gifting the cell lines that are used in this study.
References
-
Belew, M. D., Chien, E., Wong, M., & Michael, W. M. (2021). A global chromatin compaction pathway that represses germline gene expression during starvation. The Journal of Cell Biology, 220(9), e202009197. https://doi.org/10.1083/jcb.202009197
-
Böhme, M., & Kayser, S. (2021). Immune-Based Therapeutic Strategies for Acute Myeloid Leukemia. Cancers, 14(1), 105. https://doi.org/10.3390/cancers14010105
-
Chen, J., Pang, W., Deng, M., Zheng, R., Chen, Y., Zhang, Z., Tan, Z., & Bai, Z. (2025). Global, regional, and national burden of leukemia, 1990–2021: a systematic analysis of the global burden of disease in 2021. Frontiers in Medicine, 12. https://doi.org/10.3389/fmed.2025.1542317
-
Cierna, Z., Miskovska, V., Roska, J., Kalavska, A., Babal, P., & Mego, M. (2020). Increased levels of XPA might be the basis of cisplatin resistance in germ cell tumours. BMC Cancer, 20(1), 17. https://doi.org/10.1186/s12885-019-6496-1
-
Cimmino, L., Dolgalev, I., Wang, Y., Yoshimi, A., Martin, G. H., Wang, J., Ng, V., Xia, B., Witkowski, M. T., Mitchell-Flack, M., Grillo, I., Bakogianni, S., Ndiaye-Lobry, D., Martín, M. T., Guillamot, M., Banh, R. S., Xu, M., Figueroa, M. E., Dickins, R. A., & Aifantis, I. (2017). Restoration of TET2 function blocks aberrant Self-Renewal and leukemia progression. Cell, 170(6), 1079–1095.e20. https://doi.org/10.1016/j.cell.2017.07.032
-
Dombret, H., & Gardin, C. (2016). An update of current treatments for adult acute myeloid leukemia. Blood, 127(1), 53–61. https://doi.org/10.1182/blood-2015-08-604520
-
Du, M., Chen, W., Liu, K., Wang, L., Hu, Y., Mao, Y., Sun, X., Luo, Y., Shi, J., Shao, K., Huang, H., & Ye, D. (2022). The Global Burden of Leukemia and Its Attributable Factors in 204 Countries and Territories: Findings from the Global Burden of Disease 2019 Study and Projections to 2030. Journal of Oncology, 2022. https://doi.org/10.1155/2022/1612702
-
Gbenjo, J., McCrary, G., & Wilson, S. (2023). Leukemia: What Primary Care Physicians Need to Know. American Family Physician, 107(4), 397–405.
-
Ghosh, I., & Mukherjee, S. (2023). Acute lymphocytic leukemia incidence and survivability trends in the United States over the last two decades: SEER data set from 2000-2019. Journal of Clinical Oncology, 41(16_suppl), e19050. https://doi.org/10.1200/jco.2023.41.16_suppl.e19050
-
Goll, M. G., Kirpekar, F., Maggert, K. A., Yoder, J. A., Hsieh, C. L., Zhang, X., Golic, K. G., Jacobsen, S. E., & Bestor, T. H. (2006). Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science (New York, N.Y.), 311(5759), 395–398. https://doi.org/10.1126/science.1120976
-
Heidari, A. (2021). Common types of Leukemia and its Symptoms. Arch Can Res, 9(S1), e002.
-
Hochhaus, A., Baccarani, M., Silver, R., Schiffer, C., Apperley, J., Cervantes, F., Clark, R., Cortes, J., Deininger, M., Guilhot, F., Hjorth-Hansen, H., Hughes, T., Janssen, J., Kantarjian, H., Kim, D., Larson, R., Lipton, J., Mahon, F., Mayer, J., Nicolini, F., Niederwieser, D., Pane, F., Radich, J., Réa, D., Richter, J., Rosti, G., Rousselot, P., Saglio, G., Saussele, S., Soverini, S., Steegmann, J., Turkina, A., Zaritskey, A., & Hehlmann, R. (2020). European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia, 34(4), 966–984. https://doi.org/10.1038/s41375-020-0776-2
-
Huerga-Domínguez, S., Villar, S., Prósper, F., & Alfonso-Piérola, A. (2022). Updates on the Management of Acute Myeloid Leukemia. Cancers, 14(19), 4756. https://doi.org/10.3390/cancers14194756
-
Ilyas, M., Ramzan, M., Deriche, M., Mahmood, K., & Naz, A. (2025). An efficient leukemia prediction method using machine learning and deep learning with selected features. PLOS One, 20(4), e0320669. https://doi.org/10.1371/journal.pone.0320669
-
Karrar, H., Nouh, M., Juman, A., Almutiri, M., Alqudairy, L., Aljameeli, A., Aljameeli, A., Alabdullatif, A., Alsuqayh, K., Alhuthayli, A., Alkredees, M., Alriyaee, A., Alaithan, M., & Alshmrany, B. (2022). Leukemia Perspective in Current Practice. World Family Medicine Journal/Middle East Journal of Family Medicine, 95(251581). https://doi.org/10.5742/mewfm.2023.95251581
-
Ko, M., Huang, Y., Jankowska, A. M., Pape, U. J., Tahiliani, M., Bandukwala, H. S., An, J., Lamperti, E. D., Koh, K. P., Ganetzky, R., Liu, X. S., Aravind, L., Agarwal, S., Maciejewski, J. P., & Rao, A. (2010). Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature, 468(7325), 839–843. https://doi.org/10.1038/nature09586
-
Lewinska, A., Adamczyk-Grochala, J., & Wnuk, M. (2023). TRDMT1-mediated RNA C-5 methylation as a novel target in anticancer therapy. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1878(6), 188964. https://doi.org/10.1016/j.bbcan.2023.188964
-
Liao, C., Talluri, S., Zhao, J., Mu, S., Kumar, S., Shi, J., Buon, L., Munshi, N. C., & Shammas, M. A. (2022). RAD51 Is Implicated in DNA Damage, Chemoresistance and Immune Dysregulation in Solid Tumors. Cancers, 14(22), 5697. https://doi.org/10.3390/cancers14225697
-
Liu, J., Jiang, P., Lu, Z., Yu, Z., & Qian, P. (2024). Decoding leukemia at the single-cell level: clonal architecture, classification, microenvironment, and drug resistance. Experimental Hematology & Oncology, 13(1), 10. https://doi.org/10.1186/s40164-024-00479-6
-
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.), 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
-
Lord, C., & Ashworth, A. (2016). BRCAness revisited. Nature Reviews Cancer, 16(2), 110–120. https://doi.org/10.1038/nrc.2015.21
-
Malka, M. M., Eberle, J., Niedermayer, K., Zlotos, D. P., & Wiesmüller, L. (2021). Dual PARP and RAD51 Inhibitory Drug Conjugates Show Synergistic and Selective Effects on Breast Cancer Cells. Biomolecules, 11(7), 981. https://doi.org/10.3390/biom11070981
-
Martincorena, I., & Campbell, P. J. (2015). Somatic mutation in cancer and normal cells. Science (New York, N.Y.), 349(6255), 1483–1489. https://doi.org/10.1126/science.aab4082
-
Mehmetbeyoglu Duman, S. (2023). Imbalance of DNA methylation and demethylation as pathogenic mechanism of acute leukaemia [Unpublished doctoral dissertation, Cardiff University].
Morinishi, L., Kochanowski, K., Levine, R. L., Wu, L. F., & Altschuler, S. J. (2020). Loss of TET2 Affects Proliferation and Drug Sensitivity through Altered Dynamics of Cell-State Transitions. Cell Systems, 11(1), 86–94.e5. https://doi.org/10.1016/j.cels.2020.06.003
-
Mukhtiar, V., Gandhi, O., Bhanushali, C., Mehta, M., Parikh, K., Shah, R., Namjoshi, D., Shubhangi, F., & Seetharaman, K. (2024). Chronic Myeloid Leukemia: Impact of Social and Demographic Disparities on Survival Outcomes. Blood, 144(Supplement 1), 210751. https://doi.org/10.1182/blood-2024-210751
-
Shimony, S., Stahl, M., & Stone, R. (2023). Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. American Journal of Hematology, 98(3), 502–526. https://doi.org/10.1002/ajh.26822
-
Sugitani, N., & Chazin, W. J. (2015). Characteristics and concepts of dynamic hub proteins in DNA processing machinery from studies of RPA. Progress in Biophysics and Molecular Biology, 117(2–3), 206–211. https://doi.org/10.1016/j.pbiomolbio.2014.12.001
-
Taheri, S., Karaca, Z., Rassoulzadegan, M., Mehmetbeyoglu, E., Zararsiz, G., Sener, E. F., Bayram, K. K., Tufan, E., Sahin, M. C., Marasli, M. K., Memis, M., Canatan, H., Ozturk, F., Tanriverdi, F., Unluhizarci, K., & Kelestimur, F. (2022). The Characterization of Sex Differences in Hypoglycemia-Induced Activation of HPA Axis on the Transcriptomic Level. Cellular and Molecular Neurobiology, 42(5), 1523–1542. https://doi.org/10.1007/s10571-021-01043-0
-
Tebbi, C. (2021). Etiology of Acute Leukemia: A Review. Cancers, 13(9), 2256. https://doi.org/10.3390/cancers13092256
-
The Cancer Genome Atlas Research Network, Weinstein, J., Collisson, E., Mills, G., Shaw, K., Ozenberger, B., Getz, G., Ellrott, K., Santra, S., Newton, Y., Heiman, D., & Sander, C. (2013). The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics, 45(10), 1113–1120. https://doi.org/10.1038/ng.2764
-
Tuorto, F., & Lyko, F. (2016). Genome recoding by tRNA modifications. Open Biology, 6(12), 160287. https://doi.org/10.1098/rsob.160287
-
Xu, J., Zhao, L., Peng, S., Chu, H., Liang, R., Tian, M., Connell, P. P., Li, G., Chen, C., & Wang, H. W. (2021). Mechanisms of distinctive mismatch tolerance between Rad51 and Dmc1 in homologous recombination. Nucleic Acids Research, 49(22), 13135–13149. https://doi.org/10.1093/nar/gkab1141
Zhao, Y., Wang, Y., & Li, S. (2018). Racial Differences in Four Leukemia Subtypes: Comprehensive Descriptive Epidemiology. Scientific Reports, 8(1), 1835. https://doi.org/10.1038/s41598-017-19081-4