Araştırma Makalesi
BibTex RIS Kaynak Göster

Isolation of Cellulolytic Fungi and Their Application for Production of Organic Fertilizer from Water Hyacinth (Eichhornia crassipes)

Yıl 2021, Cilt: 30 Sayı: 1, 16 - 21, 15.06.2021
https://doi.org/10.38042/biost.2021.30.01.03

Öz

The purpose of this study is to isolate the cellulolytic filamentous fungi involved in the decomposition of water hyacinth to produce organic fertilizer. In this study, 13 different fungi were isolated and screened. Among them, isolate N.S8 showed the highest cellulase activity with the diameter of the clear zone of 35 mm. The isolate N.S8 was identified by sequencing the D1/D2 region of 28S rRNA coding gene. BLASTN analysis of sequenced 28S rRNA segment revealed that the isolate N.S8 is Aspergillus oryzae with identity value and E-value of 100% and 0.0, respectively. Additionally, culturing the isolate N.S8 in rice bran medium (pH 6.5) for 144 hours is the optimal method of improving cellulase activity. Moreover, the use of this isolate for composting water hyacinth created an organic fertilizer with nitrogen (N), phosphorus (P2O5), and potassium (K2O) contents of 3.35%, 0.43% and 0.74%, respectively after 45 days. Because of the high contents of nutrients, this organic fertilizer could solve the problems of fertilizer for crops with an efficiency being equivalent to that of chemical fertilizers which are known as one of the causes of soil degradation, environmental pollution and the negative effect on the quality of agricultural products.

Kaynakça

  • Acharya, P. B., Acharya, D. K., & Modi, H. A. (2008). Optimization for cellulase production by Aspergillus niger using saw dust as substrate. African Journal of Biotechnology, 7(22), 4147-4152. http://doi.org./10.5897/AJB08.689
  • Agunbiade, F. O., OluOwolabi, B. I., & Adebowale, K. O. (2009). Phytoremediation potential of Eichornia crassipes in metal contaminated coastal water. Bioresource Technology, 100, 4521-4526. https://doi.org/10.1016/j.biortech.2009.04.011
  • Akharaiyi F. C & Abiola M. A. (2016). Isolation and cultivation of fungi with agrowastes formulated media. Der Pharma Chemica, 8(9), 56-62.
  • Akiba, S., Kimura, Y., Yamamoto, K., & Kumagai, H. (1995). Purification and characterization of a protease-resistant cellulase from Aspergillus niger. Journal of Fermentation and Bioengineering, 79(2), 125-130. https://doi.org/10.1016/0922-338X(95)94078-6
  • Akter, A. & Zuberi, M. I. (2009). Invasive alien species in Northern Bangladesh: identification, inventory and impacts. International journal of biodiversity and conservation, 1(5), 129-134.
  • Ali, S., Sayed, A., Sarker, R. I., & Alam, R. (1991). Factors affecting cellulase production by Aspergillus terreus using water hyacinth. World Journal of Microbiology and Biotechnology, 7(1), 62-66.
  • Anita, S., Namita, S., Narsi, R., & Bishnoi. (2009). Production of cellulases by Aspergillus heteromorphus from wheat straw under submerged fermentation. International Journal of Environmental Science and Technology, 1, 23- 26. https://doi.org/10.5281/zenodo.1055807
  • Bansal, N., Tewari, R., Soni, R., & Soni, S. K. (2012). Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Management, 32(7), 1341-1346. https://doi.org/10.1016/j.wasman.2012.03.006
  • Barton, C. J. (1948). Photometric analysis of phosphate rock. Analytical Chemistry, 20(11), 1068-1073. https://doi.org/10.1021/ac60023a024
  • Buee, M., Reich, M., Murat, C., Morin, E., Nilsson, R. H., Uroz, S. & Martin, F. (2009). 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytologist, 184, 449-456. https://doi.org/10.1111/j.1469-8137.2009.03003.x
  • Coronado-Ruiz, C., Avendaño, R., Escudero-Leyva, E., Conejo- Barboza, G., Chaverri, P., & Chavarría, M. (2018). Two new cellulolytic fungal species isolated from a 19th- century art collection. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-24934-7
  • Devanathan, A., Shanmugam, T., Balasubramanian., & Manivannan, S. (2007). Cellulase production by Aspergillus niger isolated from coastal mangrove debris. Trends in Applied Sciences Research, 2, 23-27. https://doi.org/10.3923/tasr.2007.23.27
  • Fuchs, J. G. (2010). Interactions between beneficial and harmful micro-organisms: from the composting process to compost application. In: Microbes at work. From wastes to resources (Eds. Insam H, Frank-Whittle IH, Goberna M). Springer, Heidelberg, 213-230. https://doi.org/10.1007/978-3-642-04043-6_11
  • Ghosh, D. (2010). Water hyacinth, befriending the noxious weed. Science Reporter, 47(12), 46-48.
  • Hart, T. D., De Leij, F.A.A.M., Kinsey, G., Kelley, J. & Lynch, J. M. (2002). Strategies for the isolation of cellulolytic fungi for composting of wheat straw. World Journal of Microbiology and Biotechnology, 18(5), 471-480. https://doi.org/10.1023/A:1015519005814
  • Hesse, P. R., & Hesse, P. R. (1971). Textbook of soil chemical analysis. William Clowes and Son, London. https://doi.org/10.1017/S0014479700005202
  • Hubbe, M. A., Nazhad, M. & Sánchez, C. (2010). Composting as a way to convert cellulosic biomass and organic waste into high-value soil amendments: A review. 5(4), 2808-2854. https://doi.org/10.15376/biores.5.4.2808-2854
  • Jafari, N. (2010). Ecological and socio-economic utilization of water hyacinth (Eichhornia crassipes Mart Solms). Journal of Applied Sciences and Environmental Management, 90, 43-49. https://doi.org/10.4314/jasem.v14i2.57834
  • Klich M. A., (2002). Identification of common Aspergillus species. Centraalbureau Voor Schimmelcultures CBS, Utrecht, The Netherlands.
  • Mishra, B. K. & Nain, L. (2013). Microbial activity during rice straw composting under co-inoculation of cellulomonas cellulans and Phanerochaete chrysosporium. International Journal of ChemTech Research, 5(2), 795- 801.
  • Morris, S. J. & Robertson, G. P. (2005). Linking function between scales of resolution. In: The Fungal community: its organization and role in the ecosystem (Eds. Dighton J, White JF, Oudemans P). Taylor and Francis, Boca Raton, USA, 13-26.
  • Nochure, S. V., Roberts, M. F., & Demain, A. L. (1993). True cellulase production by C.thermocellum grown on different carbon sources. Biotechnology Letters, 15(6), 641-646.
  • Talekar, S., Ghodake, V., Chavare, S., Ingrole, R., Kate, A., Magdum, S., & Pillai, M. (2011). Production and characterization of cellulase by local fungal isolate of India using water hyacinth as carbon source and reuse of fungal biomass for dye degradation. International Journal of Engineering, Science and Technology, 3 (4), 3236-3241.
  • Thanaporn, P., & Nuntavun, R. (2019). Liquid organic fertilizer production for growing vegetables under hydroponic condition. International Journal of Recycling of Organic Waste in Agriculture, 8, 369-380. https://doi.org/10.1007/s40093-019-0257-7
  • Tolan, J. S., & Foody, B. (1999). Cellulase from submerged fermentation. In: Advances in Biochemical Engineering. Biotechnology, 65, 41-67. https://doi.org/10.1007/3- 540-49194-5_3
  • Osoro, N. O., Kawaka, F., Naluyange, V., Ombori, O., Muoma, J. O., Amoding, A. & Maingi, J. M. (2014). Effects of water hyacinth (Eichhornia crassipes [Mart.] Solms.) compost on growth and yield of common beans (Phaseolus vulgaris) in Lake Victoria Basin. European International Journal of Science and Technology, 3(7), 173-186.
  • Sandhu, G. S., Kline, B. C., Stockman, L., & Roberts, G. D. (1995). Molecular probes for diagnosis of fungal infections. Journal of Clinical Microbiology, 33, 2913-2919. http://doi.org/10.1128/JCM.33.11.2913-2919.1995
  • Singh, S., Moholkar, V. S., & Goyal, A. (2013). Isolation, Identification, and Characterization of a Cellulolytic Bacillus amyloliquefaciens Strain SS35 from Rhinoceros Dung. ISRN Microbiology, 2-7. https://doi.org/10.1155/2013/728134
  • Sivaramanan, S. (2014). Isolation of cellulolytic fungi and their degradation on cellulosic agricultural wastes. Journal of Academia and Industrial Research, 2(8), 458-463.
  • Zimmels, Y., Kirzhner, F. & Malkovskaya, A. (2006). Application of Eichhornia crassipes and Pistia stratiotes for treatment of urban sewage in Israel. Journal of Environmental Management, 81, 420-428. https://doi.org/10.1016/j.jenvman.2005.11.014
Yıl 2021, Cilt: 30 Sayı: 1, 16 - 21, 15.06.2021
https://doi.org/10.38042/biost.2021.30.01.03

Öz

Kaynakça

  • Acharya, P. B., Acharya, D. K., & Modi, H. A. (2008). Optimization for cellulase production by Aspergillus niger using saw dust as substrate. African Journal of Biotechnology, 7(22), 4147-4152. http://doi.org./10.5897/AJB08.689
  • Agunbiade, F. O., OluOwolabi, B. I., & Adebowale, K. O. (2009). Phytoremediation potential of Eichornia crassipes in metal contaminated coastal water. Bioresource Technology, 100, 4521-4526. https://doi.org/10.1016/j.biortech.2009.04.011
  • Akharaiyi F. C & Abiola M. A. (2016). Isolation and cultivation of fungi with agrowastes formulated media. Der Pharma Chemica, 8(9), 56-62.
  • Akiba, S., Kimura, Y., Yamamoto, K., & Kumagai, H. (1995). Purification and characterization of a protease-resistant cellulase from Aspergillus niger. Journal of Fermentation and Bioengineering, 79(2), 125-130. https://doi.org/10.1016/0922-338X(95)94078-6
  • Akter, A. & Zuberi, M. I. (2009). Invasive alien species in Northern Bangladesh: identification, inventory and impacts. International journal of biodiversity and conservation, 1(5), 129-134.
  • Ali, S., Sayed, A., Sarker, R. I., & Alam, R. (1991). Factors affecting cellulase production by Aspergillus terreus using water hyacinth. World Journal of Microbiology and Biotechnology, 7(1), 62-66.
  • Anita, S., Namita, S., Narsi, R., & Bishnoi. (2009). Production of cellulases by Aspergillus heteromorphus from wheat straw under submerged fermentation. International Journal of Environmental Science and Technology, 1, 23- 26. https://doi.org/10.5281/zenodo.1055807
  • Bansal, N., Tewari, R., Soni, R., & Soni, S. K. (2012). Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Management, 32(7), 1341-1346. https://doi.org/10.1016/j.wasman.2012.03.006
  • Barton, C. J. (1948). Photometric analysis of phosphate rock. Analytical Chemistry, 20(11), 1068-1073. https://doi.org/10.1021/ac60023a024
  • Buee, M., Reich, M., Murat, C., Morin, E., Nilsson, R. H., Uroz, S. & Martin, F. (2009). 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytologist, 184, 449-456. https://doi.org/10.1111/j.1469-8137.2009.03003.x
  • Coronado-Ruiz, C., Avendaño, R., Escudero-Leyva, E., Conejo- Barboza, G., Chaverri, P., & Chavarría, M. (2018). Two new cellulolytic fungal species isolated from a 19th- century art collection. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-24934-7
  • Devanathan, A., Shanmugam, T., Balasubramanian., & Manivannan, S. (2007). Cellulase production by Aspergillus niger isolated from coastal mangrove debris. Trends in Applied Sciences Research, 2, 23-27. https://doi.org/10.3923/tasr.2007.23.27
  • Fuchs, J. G. (2010). Interactions between beneficial and harmful micro-organisms: from the composting process to compost application. In: Microbes at work. From wastes to resources (Eds. Insam H, Frank-Whittle IH, Goberna M). Springer, Heidelberg, 213-230. https://doi.org/10.1007/978-3-642-04043-6_11
  • Ghosh, D. (2010). Water hyacinth, befriending the noxious weed. Science Reporter, 47(12), 46-48.
  • Hart, T. D., De Leij, F.A.A.M., Kinsey, G., Kelley, J. & Lynch, J. M. (2002). Strategies for the isolation of cellulolytic fungi for composting of wheat straw. World Journal of Microbiology and Biotechnology, 18(5), 471-480. https://doi.org/10.1023/A:1015519005814
  • Hesse, P. R., & Hesse, P. R. (1971). Textbook of soil chemical analysis. William Clowes and Son, London. https://doi.org/10.1017/S0014479700005202
  • Hubbe, M. A., Nazhad, M. & Sánchez, C. (2010). Composting as a way to convert cellulosic biomass and organic waste into high-value soil amendments: A review. 5(4), 2808-2854. https://doi.org/10.15376/biores.5.4.2808-2854
  • Jafari, N. (2010). Ecological and socio-economic utilization of water hyacinth (Eichhornia crassipes Mart Solms). Journal of Applied Sciences and Environmental Management, 90, 43-49. https://doi.org/10.4314/jasem.v14i2.57834
  • Klich M. A., (2002). Identification of common Aspergillus species. Centraalbureau Voor Schimmelcultures CBS, Utrecht, The Netherlands.
  • Mishra, B. K. & Nain, L. (2013). Microbial activity during rice straw composting under co-inoculation of cellulomonas cellulans and Phanerochaete chrysosporium. International Journal of ChemTech Research, 5(2), 795- 801.
  • Morris, S. J. & Robertson, G. P. (2005). Linking function between scales of resolution. In: The Fungal community: its organization and role in the ecosystem (Eds. Dighton J, White JF, Oudemans P). Taylor and Francis, Boca Raton, USA, 13-26.
  • Nochure, S. V., Roberts, M. F., & Demain, A. L. (1993). True cellulase production by C.thermocellum grown on different carbon sources. Biotechnology Letters, 15(6), 641-646.
  • Talekar, S., Ghodake, V., Chavare, S., Ingrole, R., Kate, A., Magdum, S., & Pillai, M. (2011). Production and characterization of cellulase by local fungal isolate of India using water hyacinth as carbon source and reuse of fungal biomass for dye degradation. International Journal of Engineering, Science and Technology, 3 (4), 3236-3241.
  • Thanaporn, P., & Nuntavun, R. (2019). Liquid organic fertilizer production for growing vegetables under hydroponic condition. International Journal of Recycling of Organic Waste in Agriculture, 8, 369-380. https://doi.org/10.1007/s40093-019-0257-7
  • Tolan, J. S., & Foody, B. (1999). Cellulase from submerged fermentation. In: Advances in Biochemical Engineering. Biotechnology, 65, 41-67. https://doi.org/10.1007/3- 540-49194-5_3
  • Osoro, N. O., Kawaka, F., Naluyange, V., Ombori, O., Muoma, J. O., Amoding, A. & Maingi, J. M. (2014). Effects of water hyacinth (Eichhornia crassipes [Mart.] Solms.) compost on growth and yield of common beans (Phaseolus vulgaris) in Lake Victoria Basin. European International Journal of Science and Technology, 3(7), 173-186.
  • Sandhu, G. S., Kline, B. C., Stockman, L., & Roberts, G. D. (1995). Molecular probes for diagnosis of fungal infections. Journal of Clinical Microbiology, 33, 2913-2919. http://doi.org/10.1128/JCM.33.11.2913-2919.1995
  • Singh, S., Moholkar, V. S., & Goyal, A. (2013). Isolation, Identification, and Characterization of a Cellulolytic Bacillus amyloliquefaciens Strain SS35 from Rhinoceros Dung. ISRN Microbiology, 2-7. https://doi.org/10.1155/2013/728134
  • Sivaramanan, S. (2014). Isolation of cellulolytic fungi and their degradation on cellulosic agricultural wastes. Journal of Academia and Industrial Research, 2(8), 458-463.
  • Zimmels, Y., Kirzhner, F. & Malkovskaya, A. (2006). Application of Eichhornia crassipes and Pistia stratiotes for treatment of urban sewage in Israel. Journal of Environmental Management, 81, 420-428. https://doi.org/10.1016/j.jenvman.2005.11.014
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği
Bölüm Research Articles
Yazarlar

Nguyen Thı Nhan Bu kişi benim 0000-0001-5959-7487

Dang Le Hong Anh Bu kişi benim 0000-0003-1865-9332

Nguyen Minh Trı Bu kişi benim 0000-0001-6360-5902

Yayımlanma Tarihi 15 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 30 Sayı: 1

Kaynak Göster

APA Thı Nhan, N., Hong Anh, D. L., & Trı, N. M. (2021). Isolation of Cellulolytic Fungi and Their Application for Production of Organic Fertilizer from Water Hyacinth (Eichhornia crassipes). Biotech Studies, 30(1), 16-21. https://doi.org/10.38042/biost.2021.30.01.03


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services