Research Article
BibTex RIS Cite

Evaluating the microbial growth kinetics and artificial gastric digestion survival of a novel Pichia kudriavzevii FOL-04

Year 2022, Volume: 31 Issue: 1, 28 - 35, 15.06.2022
https://doi.org/10.38042/biotechstudies.1103767

Abstract

Present study aims to explore Pichia kudriavzevii FOL-04 (FOL-04)’s: i) survival against artificial gastric juice (AGJ) and artificial bile juice (ABJ), ii) growth kinetics in shake flask (SF) and fed-batch trials (FBT). Survival of FOL-04 as measured by relative cell density (RCD) against AGJ and ABJ was screened at four different pH-levels (control, 3, 2, 1.5) and ox-bile concentrations (control, 0.2%, 1%, 2%), respectively. Growth kinetics was calculated by periodic measurement of OD600 in SF (225 rpm, 30°C) or in FBT using exponential feeding regimen where pH, dissolved-oxygen and temperature were controlled at 5.5, 21%, and 30°C, respectively. The doubling-time, maximum specific growth rate, and final cell densities achieved for SF and FBT were 81.7min, 1.67, 11.79 and 170.4 min, 4.75, 37.95, respectively. RCDs calculated were similar for pH=3 and control vs both were significantly higher(p<0.05) than pH=1.5 and 2 with the latter two pH-levels were not significantly different(p>0.05). RCDs were similar across control, 0.2%, and 1% ox-bile levels(p>0.05). However, 2% ox-bile yielded significantly lower RCD (p<0.05) compared to all except 1%. FOL-04 is a potential probiotic candidate showing robustness against AGJ and ABJ and remarkable biomass increase was achieved when grown under FBT which could pave the way for developing a yeast-based probiotic using this strain.

Thanks

We thank to Michael Schroda, Prof. Dr., Technische Universität Kaiserslautern, Germany for the supply of the strains and the constructs.

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Bourdichon, F., Casaregola, S., Farrokh, C., Frisvad, J. C., Gerds, M. L., Hammes, W. P., Harnett, J., Huys, G., Laulund, S., Ouwehand, A., Powell, I. B., Prajapati, J. B., Seto, Y., Ter Schure, E., Van Boven, A., Vankerckhoven, V., Zgoda, A., Tuijtelaars, S., & Hansen, E. B. (2012). Food fermentations: Microorganisms with technological beneficial use. International Journal of Food Microbiology, 154(3), 87–97. https://doi.org/10.1016/j.ijfoodmicro.2011.12.030
  • Chelliah, R., Ramakrishnan, S. R., Prabhu, P. R., & Antony, U. (2016). Evaluation of antimicrobial activity and probiotic properties of wild-strain Pichia kudriavzevii isolated from frozen idli batter. Yeast, 33(8), 385–401. https://doi.org/10.1002/yea.3181
  • Chen, L.-S., Ma, Y., Maubois, J.-L., He, S.-H., Chen, L.-J., & Li, H.-M. (2010). Screening for the potential probiotic yeast strains from raw milk to assimilate cholesterol. Dairy Science & Technology, 90(5), 537–548. https://doi.org/10.1051/dst/2010001
  • Choi, D.-H., Park, E.-H., & Kim, M.-D. (2017). Isolation of thermotolerant yeast Pichia kudriavzevii from nuruk. Food Science and Biotechnology, 26(5), 1357–1362. https://doi.org/10.1007/s10068-017-0155-6
  • De Vuyst, L., Harth, H., Van Kerrebroeck, S., & Leroy, F. (2016). Yeast diversity of sourdoughs and associated metabolic properties and functionalities. International Journal of Food Microbiology, 239, 26–34. https://doi.org/10.1016/j.ijfoodmicro.2016.07.018
  • Díaz-Nava, L. E., Montes-Garcia, N., Domínguez, J. M., & Aguilar-Uscanga, M. G. (2017). Effect of carbon sources on the growth and ethanol production of native yeast Pichia kudriavzevii ITV-S42 isolated from sweet sorghum juice. Bioprocess and Biosystems Engineering, 40(7), 1069–1077. https://doi.org/10.1007/s00449-017-1769-z
  • Douglass, A. P., Offei, B., Braun-Galleani, S., Coughlan, A. Y., Martos, A. A. R., Ortiz Merino, R. A., Byrne, K. P., & Wolfe, K. H. (2018). Population genomics shows no distinction between pathogenic Candida krusei and environmental Pichia kudriavzevii: One species, four names. PLOS Pathogens, 14(7), e1007138. https://doi.org/10.1371/journal.ppat.1007138
  • França, R. C., Conceição, F. R., Mendonça, M., Haubert, L., Sabadin, G., de Oliveira, P. D., Amaral, M. G., Silva, W. P. da, & Moreira, Â. N. (2015). Pichia pastoris X-33 has probiotic properties with remarkable antibacterial activity against Salmonella Typhimurium. Applied Microbiology and Biotechnology, 99(19), 7953–7961. https://doi.org/10.1007/s00253-015-6696-9
  • Greppi, A., Saubade, F., Botta, C., Humblot, C., Guyot, J.-P., & Cocolin, L. (2017). Potential probiotic Pichia kudriavzevii strains and their ability to enhance folate content of traditional cereal-based African fermented food. Food Microbiology, 62, 169–177. https://doi.org/10.1016/j.fm.2016.09.016
  • Hatoum, R., Labrie, S., & Fliss, I. (2012). Antimicrobial and Probiotic Properties of Yeasts: From Fundamental to Novel Applications. Frontiers in Microbiology, 3, 421. https://doi.org/10.3389/fmicb.2012.00421
  • Karaoglan, H. A., Keklik, N. M., & Develi Isıklı, N. (2019). Degradation kinetics of anthocyanin and physicochemical changes in fermented turnip juice exposed to pulsed UV light. Journal of Food Science and Technology, 56(1), 30–39. https://doi.org/10.1007/s13197-018-3434-1
  • Klaenhammer, T. R., & Kleeman, E. G. (1981). Growth Characteristics, Bile Sensitivity, and Freeze Damage in Colonial Variants of Lactobacillus acidophilus. Applied and Environmental Microbiology, 41(6), 1461–1467. https://doi.org/10.1128/aem.41.6.1461-1467.1981
  • Konczak, I., & Zhang, W. (2004). Anthocyanins—More Than Nature’s Colours. Journal of Biomedicine and Biotechnology, 2004(5), 239–240. https://doi.org/10.1155/S1110724304407013
  • Kumura, H., Tanoue, Y., Tsukahara, M., Tanaka, T., & Shimazaki, K. (2004). Screening of Dairy Yeast Strains for Probiotic Applications. Journal of Dairy Science, 87(12), 4050–4056. https://doi.org/10.3168/jds.S0022-0302(04)73546-8
  • Kurtzman, C. P. (2011). Chapter 57—Pichia E.C. Hansen (1904). In C. P. Kurtzman, J. W. Fell, & T. Boekhout (Eds.), The Yeasts (Fifth Edition) (pp. 685–707). Elsevier. https://doi.org/10.1016/B978-0-444-52149-1.00057-4
  • Li, P., Li, S., Cheng, L., & Luo, L. (2014). Analyzing the relation between the microbial diversity of DaQu and the turbidity spoilage of traditional Chinese vinegar. Applied Microbiology and Biotechnology, 98(13), 6073–6084. https://doi.org/10.1007/s00253-014-5697-4
  • Liti, G. (2015). The fascinating and secret wildlife of the budding yeast S. cerevisiae. ELife, 4, e05835. https://doi.org/10.7554/eLife.05835
  • McFarland, L. V., & Bernasconi, P. (1993). Saccharomyces boulardii. A Review of an Innovative Biotherapeutic Agent. Microbial Ecology in Health and Disease, 6(4), 157–171. https://doi.org/10.3109/08910609309141323
  • Moslehi-Jenabian, S., Lindegaard, L., & Jespersen, L. (2010). Beneficial Effects of Probiotic and Food Borne Yeasts on Human Health. Nutrients, 2(4), 449–473. https://doi.org/10.3390/nu2040449
  • Mukherjee, V., Radecka, D., Aerts, G., Verstrepen, K. J., Lievens, B., & Thevelein, J. M. (2017). Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation. Biotechnology for Biofuels, 10(1), 216. https://doi.org/10.1186/s13068-017-0899-5
  • Ndubuisi, I. A., Qin, Q., Liao, G., Wang, B., Moneke, A. N., Ogbonna, J. C., Jin, C., & Fang, W. (2020). Effects of various inhibitory substances and immobilization on ethanol production efficiency of a thermotolerant Pichia kudriavzevii. Biotechnology for Biofuels, 13(1), 91. https://doi.org/10.1186/s13068-020-01729-5
  • Ogunremi, O. R., Agrawal, R., & Sanni, A. I. (2015). Development of cereal-based functional food using cereal-mix substrate fermented with probiotic strain – Pichia kudriavzevii OG32. Food Science & Nutrition, 3(6), 486–494. https://doi.org/10.1002/fsn3.239
  • Ouwehand, A. C., Salminen, S., & Isolauri, E. (2002). Probiotics: An overview of beneficial effects. Antonie van Leeuwenhoek, 82(1), 279–289. https://doi.org/10.1023/A:1020620607611
  • Paradis, E., & Schliep, K. (2019). ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526–528. https://doi.org/10.1093/bioinformatics/bty633
  • Perricone, M., Bevilacqua, A., Corbo, M. R., & Sinigaglia, M. (2014). Technological characterization and probiotic traits of yeasts isolated from Altamura sourdough to select promising microorganisms as functional starter cultures for cereal-based products. Food Microbiology, 38, 26–35. https://doi.org/10.1016/j.fm.2013.08.006
  • Pongcharoen, P., Chawneua, J., & Tawong, W. (2018). High-temperature alcoholic fermentation by new thermotolerant yeast strains Pichia kudriavzevii isolated from sugarcane field soil. Agriculture and Natural Resources, 52(6), 511–518. https://doi.org/10.1016/j.anres.2018.11.017
  • R Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/
  • Radecka, D., Mukherjee, V., Mateo, R. Q., Stojiljkovic, M., Foulquié-Moreno, M. R., & Thevelein, J. M. (2015). Looking beyond Saccharomyces: The potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Research, 15(6). https://doi.org/10.1093/femsyr/fov053
  • Roth V. (2006). Doubling Time Computing. Retrieved October 13, 2021, from http://www.doubling-time.com/compute.php
  • Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74(12), 5463–5467. https://doi.org/10.1073/pnas.74.12.5463
  • Sankh, S., Thiru, M., Saran, S., & Rangaswamy, V. (2013). Biodiesel production from a newly isolated Pichia kudriavzevii strain. Fuel, 106, 690–696. https://doi.org/10.1016/j.fuel.2012.12.014
  • Simões, L. a., Cristina de Souza, A., Ferreira, I., Melo, D. s., Lopes, L. a. a., Magnani, M., Schwan, R. f., & Dias, D. r. (2021). Probiotic properties of yeasts isolated from Brazilian fermented table olives. Journal of Applied Microbiology, 131(4), 1983–1997. https://doi.org/10.1111/jam.15065
  • Smukowski Heil, C., Burton, J. N., Liachko, I., Friedrich, A., Hanson, N. A., Morris, C. L., Schacherer, J., Shendure, J., Thomas, J. H., & Dunham, M. J. (2018). Identification of a novel interspecific hybrid yeast from a metagenomic spontaneously inoculated beer sample using Hi-C. Yeast, 35(1), 71–84. https://doi.org/10.1002/yea.3280
  • Tanguler, H., & Erten, H. (2012). Occurrence and growth of lactic acid bacteria species during the fermentation of shalgam (salgam), a traditional Turkish fermented beverage. LWT - Food Science and Technology, 46(1), 36–41. https://doi.org/10.1016/j.lwt.2011.10.026
  • Wang, Z., Zhuge, J., Fang, H., & Prior, B. A. (2001). Glycerol production by microbial fermentation: A review. Biotechnology Advances, 19(3), 201–223. https://doi.org/10.1016/S0734-9750(01)00060-X
  • Song, S.-H., Cho, Y.-H., & Park, J. (2003). Microencapsulation of Lactobacillus casei YIT 9018 using a Microporous Glass Membrane Emulsification System. Journal of Food Science, 68(1), 195–200. https://doi.org/10.1111/j.1365-2621.2003.tb14139.x
  • Sun, W., & Griffiths, M. W. (2000). Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan–xanthan beads. International Journal of Food Microbiology, 61(1), 17–25. https://doi.org/10.1016/S0168-1605(00)00327-5
  • Xiao, H., Shao, Z., Jiang, Y., Dole, S., & Zhao, H. (2014). Exploiting Issatchenkia orientalis SD108 for succinic acid production. Microbial Cell Factories, 13(1), 121. https://doi.org/10.1186/s12934-014-0121-4
  • Yetiman, A. E., Keskin, A., Darendeli, B. N., Kotil, S. E., Ortakci, F., & Dogan, M. (2022). Characterization of genomic, physiological, and probiotic features Lactiplantibacillus plantarum DY46 strain isolated from traditional lactic acid fermented shalgam beverage. Food Bioscience, 46, 101499. https://doi.org/10.1016/j.fbio.2021.10149
Year 2022, Volume: 31 Issue: 1, 28 - 35, 15.06.2022
https://doi.org/10.38042/biotechstudies.1103767

Abstract

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Bourdichon, F., Casaregola, S., Farrokh, C., Frisvad, J. C., Gerds, M. L., Hammes, W. P., Harnett, J., Huys, G., Laulund, S., Ouwehand, A., Powell, I. B., Prajapati, J. B., Seto, Y., Ter Schure, E., Van Boven, A., Vankerckhoven, V., Zgoda, A., Tuijtelaars, S., & Hansen, E. B. (2012). Food fermentations: Microorganisms with technological beneficial use. International Journal of Food Microbiology, 154(3), 87–97. https://doi.org/10.1016/j.ijfoodmicro.2011.12.030
  • Chelliah, R., Ramakrishnan, S. R., Prabhu, P. R., & Antony, U. (2016). Evaluation of antimicrobial activity and probiotic properties of wild-strain Pichia kudriavzevii isolated from frozen idli batter. Yeast, 33(8), 385–401. https://doi.org/10.1002/yea.3181
  • Chen, L.-S., Ma, Y., Maubois, J.-L., He, S.-H., Chen, L.-J., & Li, H.-M. (2010). Screening for the potential probiotic yeast strains from raw milk to assimilate cholesterol. Dairy Science & Technology, 90(5), 537–548. https://doi.org/10.1051/dst/2010001
  • Choi, D.-H., Park, E.-H., & Kim, M.-D. (2017). Isolation of thermotolerant yeast Pichia kudriavzevii from nuruk. Food Science and Biotechnology, 26(5), 1357–1362. https://doi.org/10.1007/s10068-017-0155-6
  • De Vuyst, L., Harth, H., Van Kerrebroeck, S., & Leroy, F. (2016). Yeast diversity of sourdoughs and associated metabolic properties and functionalities. International Journal of Food Microbiology, 239, 26–34. https://doi.org/10.1016/j.ijfoodmicro.2016.07.018
  • Díaz-Nava, L. E., Montes-Garcia, N., Domínguez, J. M., & Aguilar-Uscanga, M. G. (2017). Effect of carbon sources on the growth and ethanol production of native yeast Pichia kudriavzevii ITV-S42 isolated from sweet sorghum juice. Bioprocess and Biosystems Engineering, 40(7), 1069–1077. https://doi.org/10.1007/s00449-017-1769-z
  • Douglass, A. P., Offei, B., Braun-Galleani, S., Coughlan, A. Y., Martos, A. A. R., Ortiz Merino, R. A., Byrne, K. P., & Wolfe, K. H. (2018). Population genomics shows no distinction between pathogenic Candida krusei and environmental Pichia kudriavzevii: One species, four names. PLOS Pathogens, 14(7), e1007138. https://doi.org/10.1371/journal.ppat.1007138
  • França, R. C., Conceição, F. R., Mendonça, M., Haubert, L., Sabadin, G., de Oliveira, P. D., Amaral, M. G., Silva, W. P. da, & Moreira, Â. N. (2015). Pichia pastoris X-33 has probiotic properties with remarkable antibacterial activity against Salmonella Typhimurium. Applied Microbiology and Biotechnology, 99(19), 7953–7961. https://doi.org/10.1007/s00253-015-6696-9
  • Greppi, A., Saubade, F., Botta, C., Humblot, C., Guyot, J.-P., & Cocolin, L. (2017). Potential probiotic Pichia kudriavzevii strains and their ability to enhance folate content of traditional cereal-based African fermented food. Food Microbiology, 62, 169–177. https://doi.org/10.1016/j.fm.2016.09.016
  • Hatoum, R., Labrie, S., & Fliss, I. (2012). Antimicrobial and Probiotic Properties of Yeasts: From Fundamental to Novel Applications. Frontiers in Microbiology, 3, 421. https://doi.org/10.3389/fmicb.2012.00421
  • Karaoglan, H. A., Keklik, N. M., & Develi Isıklı, N. (2019). Degradation kinetics of anthocyanin and physicochemical changes in fermented turnip juice exposed to pulsed UV light. Journal of Food Science and Technology, 56(1), 30–39. https://doi.org/10.1007/s13197-018-3434-1
  • Klaenhammer, T. R., & Kleeman, E. G. (1981). Growth Characteristics, Bile Sensitivity, and Freeze Damage in Colonial Variants of Lactobacillus acidophilus. Applied and Environmental Microbiology, 41(6), 1461–1467. https://doi.org/10.1128/aem.41.6.1461-1467.1981
  • Konczak, I., & Zhang, W. (2004). Anthocyanins—More Than Nature’s Colours. Journal of Biomedicine and Biotechnology, 2004(5), 239–240. https://doi.org/10.1155/S1110724304407013
  • Kumura, H., Tanoue, Y., Tsukahara, M., Tanaka, T., & Shimazaki, K. (2004). Screening of Dairy Yeast Strains for Probiotic Applications. Journal of Dairy Science, 87(12), 4050–4056. https://doi.org/10.3168/jds.S0022-0302(04)73546-8
  • Kurtzman, C. P. (2011). Chapter 57—Pichia E.C. Hansen (1904). In C. P. Kurtzman, J. W. Fell, & T. Boekhout (Eds.), The Yeasts (Fifth Edition) (pp. 685–707). Elsevier. https://doi.org/10.1016/B978-0-444-52149-1.00057-4
  • Li, P., Li, S., Cheng, L., & Luo, L. (2014). Analyzing the relation between the microbial diversity of DaQu and the turbidity spoilage of traditional Chinese vinegar. Applied Microbiology and Biotechnology, 98(13), 6073–6084. https://doi.org/10.1007/s00253-014-5697-4
  • Liti, G. (2015). The fascinating and secret wildlife of the budding yeast S. cerevisiae. ELife, 4, e05835. https://doi.org/10.7554/eLife.05835
  • McFarland, L. V., & Bernasconi, P. (1993). Saccharomyces boulardii. A Review of an Innovative Biotherapeutic Agent. Microbial Ecology in Health and Disease, 6(4), 157–171. https://doi.org/10.3109/08910609309141323
  • Moslehi-Jenabian, S., Lindegaard, L., & Jespersen, L. (2010). Beneficial Effects of Probiotic and Food Borne Yeasts on Human Health. Nutrients, 2(4), 449–473. https://doi.org/10.3390/nu2040449
  • Mukherjee, V., Radecka, D., Aerts, G., Verstrepen, K. J., Lievens, B., & Thevelein, J. M. (2017). Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation. Biotechnology for Biofuels, 10(1), 216. https://doi.org/10.1186/s13068-017-0899-5
  • Ndubuisi, I. A., Qin, Q., Liao, G., Wang, B., Moneke, A. N., Ogbonna, J. C., Jin, C., & Fang, W. (2020). Effects of various inhibitory substances and immobilization on ethanol production efficiency of a thermotolerant Pichia kudriavzevii. Biotechnology for Biofuels, 13(1), 91. https://doi.org/10.1186/s13068-020-01729-5
  • Ogunremi, O. R., Agrawal, R., & Sanni, A. I. (2015). Development of cereal-based functional food using cereal-mix substrate fermented with probiotic strain – Pichia kudriavzevii OG32. Food Science & Nutrition, 3(6), 486–494. https://doi.org/10.1002/fsn3.239
  • Ouwehand, A. C., Salminen, S., & Isolauri, E. (2002). Probiotics: An overview of beneficial effects. Antonie van Leeuwenhoek, 82(1), 279–289. https://doi.org/10.1023/A:1020620607611
  • Paradis, E., & Schliep, K. (2019). ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526–528. https://doi.org/10.1093/bioinformatics/bty633
  • Perricone, M., Bevilacqua, A., Corbo, M. R., & Sinigaglia, M. (2014). Technological characterization and probiotic traits of yeasts isolated from Altamura sourdough to select promising microorganisms as functional starter cultures for cereal-based products. Food Microbiology, 38, 26–35. https://doi.org/10.1016/j.fm.2013.08.006
  • Pongcharoen, P., Chawneua, J., & Tawong, W. (2018). High-temperature alcoholic fermentation by new thermotolerant yeast strains Pichia kudriavzevii isolated from sugarcane field soil. Agriculture and Natural Resources, 52(6), 511–518. https://doi.org/10.1016/j.anres.2018.11.017
  • R Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/
  • Radecka, D., Mukherjee, V., Mateo, R. Q., Stojiljkovic, M., Foulquié-Moreno, M. R., & Thevelein, J. M. (2015). Looking beyond Saccharomyces: The potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Research, 15(6). https://doi.org/10.1093/femsyr/fov053
  • Roth V. (2006). Doubling Time Computing. Retrieved October 13, 2021, from http://www.doubling-time.com/compute.php
  • Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74(12), 5463–5467. https://doi.org/10.1073/pnas.74.12.5463
  • Sankh, S., Thiru, M., Saran, S., & Rangaswamy, V. (2013). Biodiesel production from a newly isolated Pichia kudriavzevii strain. Fuel, 106, 690–696. https://doi.org/10.1016/j.fuel.2012.12.014
  • Simões, L. a., Cristina de Souza, A., Ferreira, I., Melo, D. s., Lopes, L. a. a., Magnani, M., Schwan, R. f., & Dias, D. r. (2021). Probiotic properties of yeasts isolated from Brazilian fermented table olives. Journal of Applied Microbiology, 131(4), 1983–1997. https://doi.org/10.1111/jam.15065
  • Smukowski Heil, C., Burton, J. N., Liachko, I., Friedrich, A., Hanson, N. A., Morris, C. L., Schacherer, J., Shendure, J., Thomas, J. H., & Dunham, M. J. (2018). Identification of a novel interspecific hybrid yeast from a metagenomic spontaneously inoculated beer sample using Hi-C. Yeast, 35(1), 71–84. https://doi.org/10.1002/yea.3280
  • Tanguler, H., & Erten, H. (2012). Occurrence and growth of lactic acid bacteria species during the fermentation of shalgam (salgam), a traditional Turkish fermented beverage. LWT - Food Science and Technology, 46(1), 36–41. https://doi.org/10.1016/j.lwt.2011.10.026
  • Wang, Z., Zhuge, J., Fang, H., & Prior, B. A. (2001). Glycerol production by microbial fermentation: A review. Biotechnology Advances, 19(3), 201–223. https://doi.org/10.1016/S0734-9750(01)00060-X
  • Song, S.-H., Cho, Y.-H., & Park, J. (2003). Microencapsulation of Lactobacillus casei YIT 9018 using a Microporous Glass Membrane Emulsification System. Journal of Food Science, 68(1), 195–200. https://doi.org/10.1111/j.1365-2621.2003.tb14139.x
  • Sun, W., & Griffiths, M. W. (2000). Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan–xanthan beads. International Journal of Food Microbiology, 61(1), 17–25. https://doi.org/10.1016/S0168-1605(00)00327-5
  • Xiao, H., Shao, Z., Jiang, Y., Dole, S., & Zhao, H. (2014). Exploiting Issatchenkia orientalis SD108 for succinic acid production. Microbial Cell Factories, 13(1), 121. https://doi.org/10.1186/s12934-014-0121-4
  • Yetiman, A. E., Keskin, A., Darendeli, B. N., Kotil, S. E., Ortakci, F., & Dogan, M. (2022). Characterization of genomic, physiological, and probiotic features Lactiplantibacillus plantarum DY46 strain isolated from traditional lactic acid fermented shalgam beverage. Food Bioscience, 46, 101499. https://doi.org/10.1016/j.fbio.2021.10149
There are 40 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Articles
Authors

Ismail Gumustop This is me 0000-0002-1452-1283

Fatih Ortakci This is me 0000-0003-1319-0854

Publication Date June 15, 2022
Published in Issue Year 2022 Volume: 31 Issue: 1

Cite

APA Gumustop, I., & Ortakci, F. (2022). Evaluating the microbial growth kinetics and artificial gastric digestion survival of a novel Pichia kudriavzevii FOL-04. Biotech Studies, 31(1), 28-35. https://doi.org/10.38042/biotechstudies.1103767


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services