Araştırma Makalesi
PDF EndNote BibTex RIS Kaynak Göster

Yıl 2022, Cilt 31, Sayı 1, 28 - 35, 15.06.2022
https://doi.org/10.38042/biotechstudies.1103767

Öz

Kaynakça

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Bourdichon, F., Casaregola, S., Farrokh, C., Frisvad, J. C., Gerds, M. L., Hammes, W. P., Harnett, J., Huys, G., Laulund, S., Ouwehand, A., Powell, I. B., Prajapati, J. B., Seto, Y., Ter Schure, E., Van Boven, A., Vankerckhoven, V., Zgoda, A., Tuijtelaars, S., & Hansen, E. B. (2012). Food fermentations: Microorganisms with technological beneficial use. International Journal of Food Microbiology, 154(3), 87–97. https://doi.org/10.1016/j.ijfoodmicro.2011.12.030
  • Chelliah, R., Ramakrishnan, S. R., Prabhu, P. R., & Antony, U. (2016). Evaluation of antimicrobial activity and probiotic properties of wild-strain Pichia kudriavzevii isolated from frozen idli batter. Yeast, 33(8), 385–401. https://doi.org/10.1002/yea.3181
  • Chen, L.-S., Ma, Y., Maubois, J.-L., He, S.-H., Chen, L.-J., & Li, H.-M. (2010). Screening for the potential probiotic yeast strains from raw milk to assimilate cholesterol. Dairy Science & Technology, 90(5), 537–548. https://doi.org/10.1051/dst/2010001
  • Choi, D.-H., Park, E.-H., & Kim, M.-D. (2017). Isolation of thermotolerant yeast Pichia kudriavzevii from nuruk. Food Science and Biotechnology, 26(5), 1357–1362. https://doi.org/10.1007/s10068-017-0155-6
  • De Vuyst, L., Harth, H., Van Kerrebroeck, S., & Leroy, F. (2016). Yeast diversity of sourdoughs and associated metabolic properties and functionalities. International Journal of Food Microbiology, 239, 26–34. https://doi.org/10.1016/j.ijfoodmicro.2016.07.018
  • Díaz-Nava, L. E., Montes-Garcia, N., Domínguez, J. M., & Aguilar-Uscanga, M. G. (2017). Effect of carbon sources on the growth and ethanol production of native yeast Pichia kudriavzevii ITV-S42 isolated from sweet sorghum juice. Bioprocess and Biosystems Engineering, 40(7), 1069–1077. https://doi.org/10.1007/s00449-017-1769-z
  • Douglass, A. P., Offei, B., Braun-Galleani, S., Coughlan, A. Y., Martos, A. A. R., Ortiz Merino, R. A., Byrne, K. P., & Wolfe, K. H. (2018). Population genomics shows no distinction between pathogenic Candida krusei and environmental Pichia kudriavzevii: One species, four names. PLOS Pathogens, 14(7), e1007138. https://doi.org/10.1371/journal.ppat.1007138
  • França, R. C., Conceição, F. R., Mendonça, M., Haubert, L., Sabadin, G., de Oliveira, P. D., Amaral, M. G., Silva, W. P. da, & Moreira, Â. N. (2015). Pichia pastoris X-33 has probiotic properties with remarkable antibacterial activity against Salmonella Typhimurium. Applied Microbiology and Biotechnology, 99(19), 7953–7961. https://doi.org/10.1007/s00253-015-6696-9
  • Greppi, A., Saubade, F., Botta, C., Humblot, C., Guyot, J.-P., & Cocolin, L. (2017). Potential probiotic Pichia kudriavzevii strains and their ability to enhance folate content of traditional cereal-based African fermented food. Food Microbiology, 62, 169–177. https://doi.org/10.1016/j.fm.2016.09.016
  • Hatoum, R., Labrie, S., & Fliss, I. (2012). Antimicrobial and Probiotic Properties of Yeasts: From Fundamental to Novel Applications. Frontiers in Microbiology, 3, 421. https://doi.org/10.3389/fmicb.2012.00421
  • Karaoglan, H. A., Keklik, N. M., & Develi Isıklı, N. (2019). Degradation kinetics of anthocyanin and physicochemical changes in fermented turnip juice exposed to pulsed UV light. Journal of Food Science and Technology, 56(1), 30–39. https://doi.org/10.1007/s13197-018-3434-1
  • Klaenhammer, T. R., & Kleeman, E. G. (1981). Growth Characteristics, Bile Sensitivity, and Freeze Damage in Colonial Variants of Lactobacillus acidophilus. Applied and Environmental Microbiology, 41(6), 1461–1467. https://doi.org/10.1128/aem.41.6.1461-1467.1981
  • Konczak, I., & Zhang, W. (2004). Anthocyanins—More Than Nature’s Colours. Journal of Biomedicine and Biotechnology, 2004(5), 239–240. https://doi.org/10.1155/S1110724304407013
  • Kumura, H., Tanoue, Y., Tsukahara, M., Tanaka, T., & Shimazaki, K. (2004). Screening of Dairy Yeast Strains for Probiotic Applications. Journal of Dairy Science, 87(12), 4050–4056. https://doi.org/10.3168/jds.S0022-0302(04)73546-8
  • Kurtzman, C. P. (2011). Chapter 57—Pichia E.C. Hansen (1904). In C. P. Kurtzman, J. W. Fell, & T. Boekhout (Eds.), The Yeasts (Fifth Edition) (pp. 685–707). Elsevier. https://doi.org/10.1016/B978-0-444-52149-1.00057-4
  • Li, P., Li, S., Cheng, L., & Luo, L. (2014). Analyzing the relation between the microbial diversity of DaQu and the turbidity spoilage of traditional Chinese vinegar. Applied Microbiology and Biotechnology, 98(13), 6073–6084. https://doi.org/10.1007/s00253-014-5697-4
  • Liti, G. (2015). The fascinating and secret wildlife of the budding yeast S. cerevisiae. ELife, 4, e05835. https://doi.org/10.7554/eLife.05835
  • McFarland, L. V., & Bernasconi, P. (1993). Saccharomyces boulardii. A Review of an Innovative Biotherapeutic Agent. Microbial Ecology in Health and Disease, 6(4), 157–171. https://doi.org/10.3109/08910609309141323
  • Moslehi-Jenabian, S., Lindegaard, L., & Jespersen, L. (2010). Beneficial Effects of Probiotic and Food Borne Yeasts on Human Health. Nutrients, 2(4), 449–473. https://doi.org/10.3390/nu2040449
  • Mukherjee, V., Radecka, D., Aerts, G., Verstrepen, K. J., Lievens, B., & Thevelein, J. M. (2017). Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation. Biotechnology for Biofuels, 10(1), 216. https://doi.org/10.1186/s13068-017-0899-5
  • Ndubuisi, I. A., Qin, Q., Liao, G., Wang, B., Moneke, A. N., Ogbonna, J. C., Jin, C., & Fang, W. (2020). Effects of various inhibitory substances and immobilization on ethanol production efficiency of a thermotolerant Pichia kudriavzevii. Biotechnology for Biofuels, 13(1), 91. https://doi.org/10.1186/s13068-020-01729-5
  • Ogunremi, O. R., Agrawal, R., & Sanni, A. I. (2015). Development of cereal-based functional food using cereal-mix substrate fermented with probiotic strain – Pichia kudriavzevii OG32. Food Science & Nutrition, 3(6), 486–494. https://doi.org/10.1002/fsn3.239
  • Ouwehand, A. C., Salminen, S., & Isolauri, E. (2002). Probiotics: An overview of beneficial effects. Antonie van Leeuwenhoek, 82(1), 279–289. https://doi.org/10.1023/A:1020620607611
  • Paradis, E., & Schliep, K. (2019). ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526–528. https://doi.org/10.1093/bioinformatics/bty633
  • Perricone, M., Bevilacqua, A., Corbo, M. R., & Sinigaglia, M. (2014). Technological characterization and probiotic traits of yeasts isolated from Altamura sourdough to select promising microorganisms as functional starter cultures for cereal-based products. Food Microbiology, 38, 26–35. https://doi.org/10.1016/j.fm.2013.08.006
  • Pongcharoen, P., Chawneua, J., & Tawong, W. (2018). High-temperature alcoholic fermentation by new thermotolerant yeast strains Pichia kudriavzevii isolated from sugarcane field soil. Agriculture and Natural Resources, 52(6), 511–518. https://doi.org/10.1016/j.anres.2018.11.017
  • R Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/
  • Radecka, D., Mukherjee, V., Mateo, R. Q., Stojiljkovic, M., Foulquié-Moreno, M. R., & Thevelein, J. M. (2015). Looking beyond Saccharomyces: The potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Research, 15(6). https://doi.org/10.1093/femsyr/fov053
  • Roth V. (2006). Doubling Time Computing. Retrieved October 13, 2021, from http://www.doubling-time.com/compute.php
  • Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74(12), 5463–5467. https://doi.org/10.1073/pnas.74.12.5463
  • Sankh, S., Thiru, M., Saran, S., & Rangaswamy, V. (2013). Biodiesel production from a newly isolated Pichia kudriavzevii strain. Fuel, 106, 690–696. https://doi.org/10.1016/j.fuel.2012.12.014
  • Simões, L. a., Cristina de Souza, A., Ferreira, I., Melo, D. s., Lopes, L. a. a., Magnani, M., Schwan, R. f., & Dias, D. r. (2021). Probiotic properties of yeasts isolated from Brazilian fermented table olives. Journal of Applied Microbiology, 131(4), 1983–1997. https://doi.org/10.1111/jam.15065
  • Smukowski Heil, C., Burton, J. N., Liachko, I., Friedrich, A., Hanson, N. A., Morris, C. L., Schacherer, J., Shendure, J., Thomas, J. H., & Dunham, M. J. (2018). Identification of a novel interspecific hybrid yeast from a metagenomic spontaneously inoculated beer sample using Hi-C. Yeast, 35(1), 71–84. https://doi.org/10.1002/yea.3280
  • Tanguler, H., & Erten, H. (2012). Occurrence and growth of lactic acid bacteria species during the fermentation of shalgam (salgam), a traditional Turkish fermented beverage. LWT - Food Science and Technology, 46(1), 36–41. https://doi.org/10.1016/j.lwt.2011.10.026
  • Wang, Z., Zhuge, J., Fang, H., & Prior, B. A. (2001). Glycerol production by microbial fermentation: A review. Biotechnology Advances, 19(3), 201–223. https://doi.org/10.1016/S0734-9750(01)00060-X
  • Song, S.-H., Cho, Y.-H., & Park, J. (2003). Microencapsulation of Lactobacillus casei YIT 9018 using a Microporous Glass Membrane Emulsification System. Journal of Food Science, 68(1), 195–200. https://doi.org/10.1111/j.1365-2621.2003.tb14139.x
  • Sun, W., & Griffiths, M. W. (2000). Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan–xanthan beads. International Journal of Food Microbiology, 61(1), 17–25. https://doi.org/10.1016/S0168-1605(00)00327-5
  • Xiao, H., Shao, Z., Jiang, Y., Dole, S., & Zhao, H. (2014). Exploiting Issatchenkia orientalis SD108 for succinic acid production. Microbial Cell Factories, 13(1), 121. https://doi.org/10.1186/s12934-014-0121-4
  • Yetiman, A. E., Keskin, A., Darendeli, B. N., Kotil, S. E., Ortakci, F., & Dogan, M. (2022). Characterization of genomic, physiological, and probiotic features Lactiplantibacillus plantarum DY46 strain isolated from traditional lactic acid fermented shalgam beverage. Food Bioscience, 46, 101499. https://doi.org/10.1016/j.fbio.2021.10149

Evaluating the microbial growth kinetics and artificial gastric digestion survival of a novel Pichia kudriavzevii FOL-04

Yıl 2022, Cilt 31, Sayı 1, 28 - 35, 15.06.2022
https://doi.org/10.38042/biotechstudies.1103767

Öz

Present study aims to explore Pichia kudriavzevii FOL-04 (FOL-04)’s: i) survival against artificial gastric juice (AGJ) and artificial bile juice (ABJ), ii) growth kinetics in shake flask (SF) and fed-batch trials (FBT). Survival of FOL-04 as measured by relative cell density (RCD) against AGJ and ABJ was screened at four different pH-levels (control, 3, 2, 1.5) and ox-bile concentrations (control, 0.2%, 1%, 2%), respectively. Growth kinetics was calculated by periodic measurement of OD600 in SF (225 rpm, 30°C) or in FBT using exponential feeding regimen where pH, dissolved-oxygen and temperature were controlled at 5.5, 21%, and 30°C, respectively. The doubling-time, maximum specific growth rate, and final cell densities achieved for SF and FBT were 81.7min, 1.67, 11.79 and 170.4 min, 4.75, 37.95, respectively. RCDs calculated were similar for pH=3 and control vs both were significantly higher(p<0.05) than pH=1.5 and 2 with the latter two pH-levels were not significantly different(p>0.05). RCDs were similar across control, 0.2%, and 1% ox-bile levels(p>0.05). However, 2% ox-bile yielded significantly lower RCD (p<0.05) compared to all except 1%. FOL-04 is a potential probiotic candidate showing robustness against AGJ and ABJ and remarkable biomass increase was achieved when grown under FBT which could pave the way for developing a yeast-based probiotic using this strain.

Kaynakça

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Bourdichon, F., Casaregola, S., Farrokh, C., Frisvad, J. C., Gerds, M. L., Hammes, W. P., Harnett, J., Huys, G., Laulund, S., Ouwehand, A., Powell, I. B., Prajapati, J. B., Seto, Y., Ter Schure, E., Van Boven, A., Vankerckhoven, V., Zgoda, A., Tuijtelaars, S., & Hansen, E. B. (2012). Food fermentations: Microorganisms with technological beneficial use. International Journal of Food Microbiology, 154(3), 87–97. https://doi.org/10.1016/j.ijfoodmicro.2011.12.030
  • Chelliah, R., Ramakrishnan, S. R., Prabhu, P. R., & Antony, U. (2016). Evaluation of antimicrobial activity and probiotic properties of wild-strain Pichia kudriavzevii isolated from frozen idli batter. Yeast, 33(8), 385–401. https://doi.org/10.1002/yea.3181
  • Chen, L.-S., Ma, Y., Maubois, J.-L., He, S.-H., Chen, L.-J., & Li, H.-M. (2010). Screening for the potential probiotic yeast strains from raw milk to assimilate cholesterol. Dairy Science & Technology, 90(5), 537–548. https://doi.org/10.1051/dst/2010001
  • Choi, D.-H., Park, E.-H., & Kim, M.-D. (2017). Isolation of thermotolerant yeast Pichia kudriavzevii from nuruk. Food Science and Biotechnology, 26(5), 1357–1362. https://doi.org/10.1007/s10068-017-0155-6
  • De Vuyst, L., Harth, H., Van Kerrebroeck, S., & Leroy, F. (2016). Yeast diversity of sourdoughs and associated metabolic properties and functionalities. International Journal of Food Microbiology, 239, 26–34. https://doi.org/10.1016/j.ijfoodmicro.2016.07.018
  • Díaz-Nava, L. E., Montes-Garcia, N., Domínguez, J. M., & Aguilar-Uscanga, M. G. (2017). Effect of carbon sources on the growth and ethanol production of native yeast Pichia kudriavzevii ITV-S42 isolated from sweet sorghum juice. Bioprocess and Biosystems Engineering, 40(7), 1069–1077. https://doi.org/10.1007/s00449-017-1769-z
  • Douglass, A. P., Offei, B., Braun-Galleani, S., Coughlan, A. Y., Martos, A. A. R., Ortiz Merino, R. A., Byrne, K. P., & Wolfe, K. H. (2018). Population genomics shows no distinction between pathogenic Candida krusei and environmental Pichia kudriavzevii: One species, four names. PLOS Pathogens, 14(7), e1007138. https://doi.org/10.1371/journal.ppat.1007138
  • França, R. C., Conceição, F. R., Mendonça, M., Haubert, L., Sabadin, G., de Oliveira, P. D., Amaral, M. G., Silva, W. P. da, & Moreira, Â. N. (2015). Pichia pastoris X-33 has probiotic properties with remarkable antibacterial activity against Salmonella Typhimurium. Applied Microbiology and Biotechnology, 99(19), 7953–7961. https://doi.org/10.1007/s00253-015-6696-9
  • Greppi, A., Saubade, F., Botta, C., Humblot, C., Guyot, J.-P., & Cocolin, L. (2017). Potential probiotic Pichia kudriavzevii strains and their ability to enhance folate content of traditional cereal-based African fermented food. Food Microbiology, 62, 169–177. https://doi.org/10.1016/j.fm.2016.09.016
  • Hatoum, R., Labrie, S., & Fliss, I. (2012). Antimicrobial and Probiotic Properties of Yeasts: From Fundamental to Novel Applications. Frontiers in Microbiology, 3, 421. https://doi.org/10.3389/fmicb.2012.00421
  • Karaoglan, H. A., Keklik, N. M., & Develi Isıklı, N. (2019). Degradation kinetics of anthocyanin and physicochemical changes in fermented turnip juice exposed to pulsed UV light. Journal of Food Science and Technology, 56(1), 30–39. https://doi.org/10.1007/s13197-018-3434-1
  • Klaenhammer, T. R., & Kleeman, E. G. (1981). Growth Characteristics, Bile Sensitivity, and Freeze Damage in Colonial Variants of Lactobacillus acidophilus. Applied and Environmental Microbiology, 41(6), 1461–1467. https://doi.org/10.1128/aem.41.6.1461-1467.1981
  • Konczak, I., & Zhang, W. (2004). Anthocyanins—More Than Nature’s Colours. Journal of Biomedicine and Biotechnology, 2004(5), 239–240. https://doi.org/10.1155/S1110724304407013
  • Kumura, H., Tanoue, Y., Tsukahara, M., Tanaka, T., & Shimazaki, K. (2004). Screening of Dairy Yeast Strains for Probiotic Applications. Journal of Dairy Science, 87(12), 4050–4056. https://doi.org/10.3168/jds.S0022-0302(04)73546-8
  • Kurtzman, C. P. (2011). Chapter 57—Pichia E.C. Hansen (1904). In C. P. Kurtzman, J. W. Fell, & T. Boekhout (Eds.), The Yeasts (Fifth Edition) (pp. 685–707). Elsevier. https://doi.org/10.1016/B978-0-444-52149-1.00057-4
  • Li, P., Li, S., Cheng, L., & Luo, L. (2014). Analyzing the relation between the microbial diversity of DaQu and the turbidity spoilage of traditional Chinese vinegar. Applied Microbiology and Biotechnology, 98(13), 6073–6084. https://doi.org/10.1007/s00253-014-5697-4
  • Liti, G. (2015). The fascinating and secret wildlife of the budding yeast S. cerevisiae. ELife, 4, e05835. https://doi.org/10.7554/eLife.05835
  • McFarland, L. V., & Bernasconi, P. (1993). Saccharomyces boulardii. A Review of an Innovative Biotherapeutic Agent. Microbial Ecology in Health and Disease, 6(4), 157–171. https://doi.org/10.3109/08910609309141323
  • Moslehi-Jenabian, S., Lindegaard, L., & Jespersen, L. (2010). Beneficial Effects of Probiotic and Food Borne Yeasts on Human Health. Nutrients, 2(4), 449–473. https://doi.org/10.3390/nu2040449
  • Mukherjee, V., Radecka, D., Aerts, G., Verstrepen, K. J., Lievens, B., & Thevelein, J. M. (2017). Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation. Biotechnology for Biofuels, 10(1), 216. https://doi.org/10.1186/s13068-017-0899-5
  • Ndubuisi, I. A., Qin, Q., Liao, G., Wang, B., Moneke, A. N., Ogbonna, J. C., Jin, C., & Fang, W. (2020). Effects of various inhibitory substances and immobilization on ethanol production efficiency of a thermotolerant Pichia kudriavzevii. Biotechnology for Biofuels, 13(1), 91. https://doi.org/10.1186/s13068-020-01729-5
  • Ogunremi, O. R., Agrawal, R., & Sanni, A. I. (2015). Development of cereal-based functional food using cereal-mix substrate fermented with probiotic strain – Pichia kudriavzevii OG32. Food Science & Nutrition, 3(6), 486–494. https://doi.org/10.1002/fsn3.239
  • Ouwehand, A. C., Salminen, S., & Isolauri, E. (2002). Probiotics: An overview of beneficial effects. Antonie van Leeuwenhoek, 82(1), 279–289. https://doi.org/10.1023/A:1020620607611
  • Paradis, E., & Schliep, K. (2019). ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526–528. https://doi.org/10.1093/bioinformatics/bty633
  • Perricone, M., Bevilacqua, A., Corbo, M. R., & Sinigaglia, M. (2014). Technological characterization and probiotic traits of yeasts isolated from Altamura sourdough to select promising microorganisms as functional starter cultures for cereal-based products. Food Microbiology, 38, 26–35. https://doi.org/10.1016/j.fm.2013.08.006
  • Pongcharoen, P., Chawneua, J., & Tawong, W. (2018). High-temperature alcoholic fermentation by new thermotolerant yeast strains Pichia kudriavzevii isolated from sugarcane field soil. Agriculture and Natural Resources, 52(6), 511–518. https://doi.org/10.1016/j.anres.2018.11.017
  • R Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/
  • Radecka, D., Mukherjee, V., Mateo, R. Q., Stojiljkovic, M., Foulquié-Moreno, M. R., & Thevelein, J. M. (2015). Looking beyond Saccharomyces: The potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Research, 15(6). https://doi.org/10.1093/femsyr/fov053
  • Roth V. (2006). Doubling Time Computing. Retrieved October 13, 2021, from http://www.doubling-time.com/compute.php
  • Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74(12), 5463–5467. https://doi.org/10.1073/pnas.74.12.5463
  • Sankh, S., Thiru, M., Saran, S., & Rangaswamy, V. (2013). Biodiesel production from a newly isolated Pichia kudriavzevii strain. Fuel, 106, 690–696. https://doi.org/10.1016/j.fuel.2012.12.014
  • Simões, L. a., Cristina de Souza, A., Ferreira, I., Melo, D. s., Lopes, L. a. a., Magnani, M., Schwan, R. f., & Dias, D. r. (2021). Probiotic properties of yeasts isolated from Brazilian fermented table olives. Journal of Applied Microbiology, 131(4), 1983–1997. https://doi.org/10.1111/jam.15065
  • Smukowski Heil, C., Burton, J. N., Liachko, I., Friedrich, A., Hanson, N. A., Morris, C. L., Schacherer, J., Shendure, J., Thomas, J. H., & Dunham, M. J. (2018). Identification of a novel interspecific hybrid yeast from a metagenomic spontaneously inoculated beer sample using Hi-C. Yeast, 35(1), 71–84. https://doi.org/10.1002/yea.3280
  • Tanguler, H., & Erten, H. (2012). Occurrence and growth of lactic acid bacteria species during the fermentation of shalgam (salgam), a traditional Turkish fermented beverage. LWT - Food Science and Technology, 46(1), 36–41. https://doi.org/10.1016/j.lwt.2011.10.026
  • Wang, Z., Zhuge, J., Fang, H., & Prior, B. A. (2001). Glycerol production by microbial fermentation: A review. Biotechnology Advances, 19(3), 201–223. https://doi.org/10.1016/S0734-9750(01)00060-X
  • Song, S.-H., Cho, Y.-H., & Park, J. (2003). Microencapsulation of Lactobacillus casei YIT 9018 using a Microporous Glass Membrane Emulsification System. Journal of Food Science, 68(1), 195–200. https://doi.org/10.1111/j.1365-2621.2003.tb14139.x
  • Sun, W., & Griffiths, M. W. (2000). Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan–xanthan beads. International Journal of Food Microbiology, 61(1), 17–25. https://doi.org/10.1016/S0168-1605(00)00327-5
  • Xiao, H., Shao, Z., Jiang, Y., Dole, S., & Zhao, H. (2014). Exploiting Issatchenkia orientalis SD108 for succinic acid production. Microbial Cell Factories, 13(1), 121. https://doi.org/10.1186/s12934-014-0121-4
  • Yetiman, A. E., Keskin, A., Darendeli, B. N., Kotil, S. E., Ortakci, F., & Dogan, M. (2022). Characterization of genomic, physiological, and probiotic features Lactiplantibacillus plantarum DY46 strain isolated from traditional lactic acid fermented shalgam beverage. Food Bioscience, 46, 101499. https://doi.org/10.1016/j.fbio.2021.10149

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Bilimi ve Teknolojisi
Bölüm Research Articles
Yazarlar

Ismail GUMUSTOP Bu kişi benim
ABDULLAH GUL UNIVERSITY, INSTITUTE OF SCIENCE, BIOENGINEERING (DR)
0000-0002-1452-1283
Türkiye


Fatih ORTAKCİ Bu kişi benim (Sorumlu Yazar)
ABDULLAH GUL UNIVERSITY, INSTITUTE OF SCIENCE, BIOENGINEERING (DR)
0000-0003-1319-0854
Türkiye

Teşekkür We thank to Michael Schroda, Prof. Dr., Technische Universität Kaiserslautern, Germany for the supply of the strains and the constructs.
Yayımlanma Tarihi 15 Haziran 2022
Yayınlandığı Sayı Yıl 2022, Cilt 31, Sayı 1

Kaynak Göster

APA Gumustop, I. & Ortakci, F. (2022). Evaluating the microbial growth kinetics and artificial gastric digestion survival of a novel Pichia kudriavzevii FOL-04 . Biotech Studies , 31 (1) , 28-35 . DOI: 10.38042/biotechstudies.1103767


ULAKBIM TR Index, Google Scholar, Crossref, Scientific Indexing Services