Research Article
BibTex RIS Cite

Porphyridium cruentum as a biological component for the green synthesis of metal nanoparticles and for the evaluation of their antimicrobial activity

Year 2025, Volume: 34 Issue: SI, 83 - 92, 21.08.2025
https://doi.org/10.38042/biotechstudies.1735385

Abstract

Silver nanoparticles are an alternative to new-generation antimicrobial agents with their antimicrobial activity. Iron and zinc nanoparticles can potentially be used as UV protection in various applications. Nowadays, green synthesis of nanoparticles as a sustainable alternative attracts attention. Microalgae are promising in nanoparticle synthesis among biological sources due to their high biomass productivity and heavy metal accumulation ability. The present study aimed to investigate the potential of synthesizing intracellular silver, zinc and iron nanoparticles from Porphyridium cruentum microalgae. For nanoparticle synthesis, the effects of metal solution concentration and amount of biomass on particle size were investigated. The nanoparticles were characterized by dynamic light scattering, UV-vis spectrophotometry, and antimicrobial activity test. Silver nanoparticles of 169.7 nm, zinc nanoparticles of 189 nm, and iron nanoparticles of 356.7 nm were characterized by DLS. 169.7 nm silver nanoparticles were synthesized with 9.83 mM AgNO3 concentration and 0.19 mg/ml biomass: metal solution mixing ratio. The surface plasmon resonance band of silver nanoparticles was observed in the 300-350 nm wavelength range. According to the antibacterial activity results of silver nanoparticles, inhibition zone diameters were obtained as 10.83±0.76 mm and 11.33±0.57 mm against Escherichia coli and Staphylococcus aureus bacteria, respectively.

Supporting Institution

TUBITAK

Project Number

117M052

Thanks

Tugce MUTAF-KILIC thanks to 2211-A TUBITAK National Scholarship Program for PhD Students.

References

  • Ahmad, S.A., Das, S.S., Khatoon, A., Ansari, M.T., Afzal, M., Hasnain, M.S., & Nayak, A.K. (2020). Bactericidal activity of silver nanoparticles: A mechanistic review. Materials Science for Energy Technologies, 3, 756–769.
  • Ahmed, S.F., Mofijur, M., Rafa, N., Chowdhury, A.T., Chowdhury, S., Nahrin, M., Saiful Islan, A.B.M. & Ong, H.C. (2022). Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environmental Research, 204.
  • Aigbe, U.O. & Osibote, U.A. (2024). Green synthesis of metal oxide nanoparticles, and their various applications. Journal of Hazardous Materials Advances, 13, 100401.
  • Agarwal, H., Nakara, A., Soumya, M., & Shanmugam, V. (2019). Eco-Friendly Synthesis of Zinc Oxide Nanoparticles Using Cinnamomum tamala Leaf Extract and its Promising Effect Towards the Antibacterial Activity. Journal of Drug Delivery Science and Technology, 53,101-212.
  • Aguilar-Ruiz, R.J., Sánchez-Machado, D.I., Martinez-Macias, M.R., López-Cervantes, J., Nateras-Ramírez, O., Campas-Baypoli, O.N., & Villegas-Peralta, Y. (2022). Effects of light intensity and culture medium on the chemical composition and growth parameters of Nannochloropsis oculate and Porphyridium cruentum. Aquaculture Research, 53, 5239–5252.
  • Al-Salhi, M.S., Elangovan, K., Ranjitsingh A.J.A., Murali, P. & Devanesan, S. (2019). Synthesis of Silver Nanoparticles Using Plant Derived 4-N-Methyl Benzoic Acid and Evaluation of Antimicrobial, Antioxidant and Antitumor Activity. Saudi Journal of Biological Sciences, 26, 970-978.
  • Bouafia, A., & Laouini, S.E. (2020). Green Synthesis of Iron Oxide Nanoparticles by Aqueous Leaves Extract of Mentha pulegium L.: Effect of Ferric Chloride Concentration on the Type of Product. Materials Letters, 265,127364.
  • Caliskan, G., Mutaf, T., Agba, H.C., & Elibol, M. (2022). Green Synthesis and Characterization of Titanium Nanoparticles Using Microalga, Phaeodactylum tricornutum. Geomicrobiology Journal, 39(1), 83–96.
  • Cepoi, L., Rudi, L., Zinicovscaia, I., Chiriac, T., Miscu, V., & Rudic, V. (2021). Biochemical changes in microalga Porphyridium cruentum associated with silver nanoparticles biosynthesis. Archives of Microbiology, 203:1547–1554.
  • Çalışkan, G., Mutaf, T., Öncel, S.Ş., & Elibol, M. (2020). Green Synthesis of Metal Nanoparticles Using Microalga Galdieria sp. IFMBE Proceedings, 73.
  • Dağlıoğlu, Y., & Yılmaz Öztürk, B. (2019). A novel intracellular synthesis of silver nanoparticles using Desmodesmus sp. (Scenedesmaceae): different methods of pigment change. Rendiconti Lincei. Scienze Fisiche e Naturali, 30, 611–621.
  • Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M.R. (2018). Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 10(57).
  • Dahoumane, S.A., Mechouet, M., Alvarez, F.J., Agathos, S.N., & Jeffryes, C. (2016). Microalgae: An Outstanding Tool in Nanotechnology. Bionatura, 1(4),196-201.
  • Deb, A. & Sutradhar, A. (2024). Microalgal nanobiotechnology for biosynthesis of metallic nanoparticles: In-depth into the strategies, mechanism and nanofluidic hydrodynamics. Biocatalysis and Agricultural Biotechnology, 56, 103046.
  • Dhandapani, K.V., Anbumani, D.i Gandhi, A.D., Annamalai, P., Muthuvenkatachalam, B.S., Kavitha, P., & Ranganathan, B. (2020). Green Route for the synthesis of Zinc Oxide Nanoparticles from Melia azedarach Leaf Extract and Evaluation of Their Antioxidant and Antibacterial Activities. Biocatalysis and Agricultural Biotechnology, 24,101517.
  • Domingos, R.F., Rafiesi, Z., Monteiro, C.E., Khan, M.A.K. & Wilkinson, K.J. (2013). Agglomeration and dissolution of zinc oxide nanoparticles: role of pH, ionic strength and fulvic acid. Environmental Chemistry, 10, 306-312.
  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., & Smith F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Division of Biochemistry, 28(3), 350-356.
  • Fakhari, S., Jamzad, M., & Fard, H.K. (2019). Green synthesis of zinc oxide nanoparticles: a comparison. Green Chemistry Letters and Reviews, 12(1), 19-24.
  • Fernandes, C., Jathar, M., Sawant, B.K.S. & Warde, T. (2023). Scale-Up of Nanoparticle Manufacturing Process. In: Jindal, A.B. (eds) Pharmaceutical Process Engineering and Scale-up Principles. AAPS Introductions in the Pharmaceutical Sciences, 13. Springer, Cham. https://doi.org/10.1007/978-3-031-31380-6_12.
  • Fuentes, M.M.R., FernaÂndez, G.G.A., PeÂrez, J.A.S., & Guerrero, J.L.G. (2000). Biomass nutrient pro®les of the microalga Porphyridium cruentum. Food Chemistry, 70, 345-353.
  • Gallego, R., Martínez, M., Cifuentes, A., Ibáñez, E., & Herrero, M. (2019). Development of a Green Downstream Process for the Valorization of Porphyridium cruentum Biomass. Molecules, 24, 1564.
  • Gallón, S.M.N., Alpaslan, E., Wang, M., Larese-Casanova,P., Londono, M.E., Atehortua, L., Pavon, J.J., & Webster, T.J. (2019). Characterization and Study of the Antibacterial Mechanisms of Silver Nanoparticles Prepared with Microalgal Exopolysaccharides. Materials Science&Engineering, C99, 685-695.
  • Gupta, D., Boora, A., Thakur, A. & Gupta, T.K. (2023). Green and sustainable synthesis of nanomaterials: Recent advancements and limitations. Environmental Research, 231, 3.
  • Jena, J., Pradhan, N., Dash, B.P., Panda, P.K., & Mishra, B.K. (2015). Pigment Mediated Biogenic Synthesis of Silver Nanoparticles Using Diatom Amphora sp. and its Antimicrobial Activity. Journal of Saudi Chemical Society, 19, 661-666.
  • Jeon, M.S., Han, S., Park, Y.H., Kim, H.S., & Choi, Y. (2021). Rapid green synthesis of silver nanoparticles using sulfated polysaccharides originating from Porphyridium cruentum UTEX 161: evaluation of antibacterial and catalytic activities. Journal of Applied Phycology, 33, 3091–3101.
  • Kandav, G & Sharma, T. (2024). Green synthesis: an ecofriendly approach for metallic nanoparticles synthesis. Particulate Science and Technology, 42(5), 874–894.
  • Karpagavinayagam, P., & Vedhi, C. (2019). Green Synthesis of Iron Oxide Nanoparticles Using Avicennia marina Flower Extract. Vacuum, 160, 286-292.
  • Kathiraven, T., Sundaramanickam, A., Shanmugam, N., & Balasubramanian, T. (2015). Green Synthesis of Silver Nanoparticles Using Marine Algae Caulerpa racemosa and Their Antibacterial Activity Against Some Human Pathogens. Appl. Nanosci., 5, 499-504.
  • Krishnamoorthy, K., Jayaraman, S., Krishnamoorthy, R., Manoharadas, S., Alshuniaber, M.A., Vikas, B., & Veeraraghavan, V.P. (2023). Green synthesis and evaluation of antimicrobial, antioxidant, anti-inflammatory, and anti-diabetic activities of silver nanoparticles from Argyreia nervosa leaf extract: An invitro study. Journal of King Saud University – Science, 35, 102955.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein Measurement with Folin-phenol Reagent. Journal of Biochemical Engineering, 193, 265-275.
  • Lu, J., Ali, H., Hurh, J., Han, Y., Batjikh, I., Rupa, E.J., Anandapadmanaban, G., Park, J.K., & Yang, D.C. (2019). The Assessment of Photocatalytic Activity of Zinc Oxide Nanoparticles from the Roots of Codonopsis Lanceolata Synthesized by One-Pot Green Synthesis Method. Optik- International Journal for Light and Electron Optics, 184, 82-89.
  • McNamara, K., & Tofail, S.A.M. (2017). Nanoparticles in biomedical applications. Advances in Physics: X, 2(1), 54–88.
  • Merin, D.D., Prakash, S., & Bhimba, B.V. (2010). Antibacterial Screening of Silver Nanoparticles Synthesized by Marine Micro Algae. Asian Pacific Journal of Tropical Medicine, 797-799.
  • Mhatre, A., Navale, M., Trivedi, N., Pandit, R., & Lali A.M. (2018). Pilot Scale Flat Panel Photobioreactor System for Mass Production of Ulva lactuca (Chlorophyta). Bioresource Technology, 249, 582-291.
  • Mubarak Ali, D., Sasikala, M., Gunasekaran, M., & Thajuddin, N. (2011). Biosynthesis and Characterization of Silver Nanoparticles Using Marine Cyanobacterium, Oscıllatorıa willei Ntdm01. Digest Journal of Nanomaterials and Biostructures, 6(2), 385-390.
  • Murillo-Rábago, E.I., Vilchis-Nestor, A.R., Juarez-Moreno, K., Garcia-Marin, L.E., Quester, K., & Castro-Longoria, E. (2022). Optimized Synthesis of Small and Stable Silver Nanoparticles Using Intracellular and Extracellular Components of Fungi: An Alternative for Bacterial Inhibition. Antibiotics, 11, 800.
  • Mutaf, T., Çalışkan, G., Meydan, C., Öncel, S.Ş. & Elibol, M. (2020). Biogenic Nanoparticle Synthesis Using Marine Alga Schizochytrium sp. IFMBE Proceedings, 73. https://doi.org/10.1007/978-3-030-17971-7_33.
  • Mutaf, T., Caliskan, G., Ozel, H., Akagac, G., Oncel, S.Ş., & Elibol, M. (2023). Green synthesis of titanium nanoparticles using a sustainable microalgal metabolite solution for potential biotechnological activities. Asia-Pac J Chem Eng., 18:e2954.
  • Patel, V., Berthold, D., Puranik, P., & Gantar, M. (2015). Screening of Cyanobacteria and Microalgae for Their Ability to Synthesize Silver Nanoparticles with Antibacterial Activity. Biotechnology Reports, 5, 112-119.
  • Prabha, S., Arya, G., Chandra, R., Ahmed, B., & Nimesh, S. (2016). Effect of size on biological properties of nanoparticles employed in gene delivery. Artificial Cells, Nanomedicine, and Biotechnology, 44, 83–91.
  • Rani, N., Rani, S., Patel, H., Bhavna, Yadav, S., Saini, M., Rewat, S. & Saini, K. (2023). Characterization and investigation of antioxidant and antimicrobial activity of zinc oxide nanoparticles prepared using leaves extract of Nyctanthesarbor-tristis. Inorganic Chemistry Communications, 150, 110516.
  • Restrepo, C.V., & Villa, C.C. (2021). Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review. Environmental Nanotechnology, Monitoring & Management, 15, 100428.
  • Rinawati, M., Sari, L.A., & Pursetyo, K.T. (2020). Chlorophyll and carotenoids analysis spectrophotometer using method on microalgae. IOP Conf. Series: Earth and Environmental Science, 441, 012056.
  • Ruiz-Ruiz, F., Benavides, J., & Rito-Palomares, M. (2013). Scaling-up of a B-phycoerythrin production and purification bioprocess involving aqueous two-phase systems: Practical experiences. Process Biochemistry, 48, 738–745.
  • Salem, D.M.S.A., Ismail, M.M., & Aly-Eldeen, A. (2019). Biogenic Synthesis and Antimicrobial Potency of Iron Oxide (Fe3O4) Nanoparticles Using Algae Harvested from the Mediterranean Sea, Egypt. Egyptian Journal of Aquatic Research, 45, 197-204.
  • Saif, S., Tahir, A., & Chen, Y. (2016). Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications. Nanomaterials, 6(209).
  • Sánchez-Saavedra, M.P., Castro-Ochoa, F.Y., Nava-Ruiz, V.M., Ruiz-Güereca, D.A., Villagómez-Aranda, A.L., Siqueiros-Vargas, F., & Molina-Cárdenas, C.A. (2018). Effects of nitrogen source and irradiance on Porphyridium cruentum. J Appl Phycol, 30, 783–792.
  • Senapati, S., Syed, A., Moeez, S., Kumar, A., & Ahmad, A. (2012). Intracellular Synthesis of Gold Nanoparticles Using Alga Tetraselmis kochinensis. Materials Letters, 79, 116-118.
  • Sharifiaghdam, M., Shaabani, E., Asghari, F. & Faridi-Majidi, R. (2021). Chitosan coated metallic nanoparticles with stability, antioxidant, and antibacterial properties: Potential for wound healing application. J Appl Polym Sci., 139:e51766.
  • Sharma, B., Purkayastha, D.D., Hazra, S., Thajamanbi, M., Bhattacharjee, C.R., Ghosh, N.N., & Rout, J. (2014). Biosynthesis of Fluorescent Gold Nanoparticles Using an Edible Freshwater Red Alga, Lemanea fluviatilis (L.) C.Ag. and Antioxidant Activity of Biomatrix Loaded Nanoparticles. Bioprocess Biosyst Eng., 37, 2559–2565.
  • Shumi, G., Demissie, T.B., Eswaramoorthy, R., Bogale, R.F., Kenasa, G. & Desalegn, T. (2023). Biosynthesis of Silver Nanoparticles Functionalized with Histidine and Phenylalanine Amino Acids for Potential Antioxidant and Antibacterial Activities. ACS Omega, 8, 24371−24386.
  • Singh, P., Kim, Y.J., Zhang, D., & Yang, D.C. (2016). Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends in Biotechnology, 34(7), 588-599.
  • Soleimani, M., & Habibi-Pirkoohi, M. (2017). Biosynthesis of Silver Nanoparticles using Chlorella vulgaris and Evaluation of the Antibacterial Efficacy Against Staphylococcus aureus. Avicenna Journal of Medical, Biotechnology, 9(3), 120-125.
  • Stanier, R.Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and Properties of Unicellular Blue-Green Algae (Order Chroococcales). Bacteriological Reviews, 35(2), 171-205.
  • Subhapriya, S., & Gomathipriya, P. (2018). Green Synthesis of Titanium Dioxide (TiO2) Nanoparticles by Trigonella foenum-graecum Extract and its Antimicrobial Properties. Microbial Pathogenesis, 116, 215-220.
  • Tounsi, L., Ben Hlima, H., Fendri, I., Abdelkafi, S. & Michaud, P. (2024). Photoautotrophic growth and accumulation of macromolecules by Porphyridium cruentum UTEX 161 depending on culture media. Biomass Conv. Bioref., 14, 26323–26340.
  • Vijayaram, S., Razafndralambo, H., Sun, Y.Z., Vasantharaj, S., Ghafarifarsani, H., Hoseinifar, S.H. & Raeeszadeh, M. (2024). Applications of Green Synthesized Metal Nanoparticles — a Review. Biological Trace Element Research, 202, 360–386.
  • Wishkerman, A., Arad, M., & Shoshana, A. (2017). Production of Silver Nanoparticles by the Diatom Phaeodactylum tricornutum. Nanotechnology VIII, 10248.
  • Yedoti, V. & Supraja, N. (2024). A Review on Algal Mediated Synthesized Metallic Nanoparticles: An Eco-Friendly Approach for Sustainable Nanotechnology. Current Journal of Applied Science and Technology, 43(6), 1-10.

Year 2025, Volume: 34 Issue: SI, 83 - 92, 21.08.2025
https://doi.org/10.38042/biotechstudies.1735385

Abstract

Project Number

117M052

References

  • Ahmad, S.A., Das, S.S., Khatoon, A., Ansari, M.T., Afzal, M., Hasnain, M.S., & Nayak, A.K. (2020). Bactericidal activity of silver nanoparticles: A mechanistic review. Materials Science for Energy Technologies, 3, 756–769.
  • Ahmed, S.F., Mofijur, M., Rafa, N., Chowdhury, A.T., Chowdhury, S., Nahrin, M., Saiful Islan, A.B.M. & Ong, H.C. (2022). Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environmental Research, 204.
  • Aigbe, U.O. & Osibote, U.A. (2024). Green synthesis of metal oxide nanoparticles, and their various applications. Journal of Hazardous Materials Advances, 13, 100401.
  • Agarwal, H., Nakara, A., Soumya, M., & Shanmugam, V. (2019). Eco-Friendly Synthesis of Zinc Oxide Nanoparticles Using Cinnamomum tamala Leaf Extract and its Promising Effect Towards the Antibacterial Activity. Journal of Drug Delivery Science and Technology, 53,101-212.
  • Aguilar-Ruiz, R.J., Sánchez-Machado, D.I., Martinez-Macias, M.R., López-Cervantes, J., Nateras-Ramírez, O., Campas-Baypoli, O.N., & Villegas-Peralta, Y. (2022). Effects of light intensity and culture medium on the chemical composition and growth parameters of Nannochloropsis oculate and Porphyridium cruentum. Aquaculture Research, 53, 5239–5252.
  • Al-Salhi, M.S., Elangovan, K., Ranjitsingh A.J.A., Murali, P. & Devanesan, S. (2019). Synthesis of Silver Nanoparticles Using Plant Derived 4-N-Methyl Benzoic Acid and Evaluation of Antimicrobial, Antioxidant and Antitumor Activity. Saudi Journal of Biological Sciences, 26, 970-978.
  • Bouafia, A., & Laouini, S.E. (2020). Green Synthesis of Iron Oxide Nanoparticles by Aqueous Leaves Extract of Mentha pulegium L.: Effect of Ferric Chloride Concentration on the Type of Product. Materials Letters, 265,127364.
  • Caliskan, G., Mutaf, T., Agba, H.C., & Elibol, M. (2022). Green Synthesis and Characterization of Titanium Nanoparticles Using Microalga, Phaeodactylum tricornutum. Geomicrobiology Journal, 39(1), 83–96.
  • Cepoi, L., Rudi, L., Zinicovscaia, I., Chiriac, T., Miscu, V., & Rudic, V. (2021). Biochemical changes in microalga Porphyridium cruentum associated with silver nanoparticles biosynthesis. Archives of Microbiology, 203:1547–1554.
  • Çalışkan, G., Mutaf, T., Öncel, S.Ş., & Elibol, M. (2020). Green Synthesis of Metal Nanoparticles Using Microalga Galdieria sp. IFMBE Proceedings, 73.
  • Dağlıoğlu, Y., & Yılmaz Öztürk, B. (2019). A novel intracellular synthesis of silver nanoparticles using Desmodesmus sp. (Scenedesmaceae): different methods of pigment change. Rendiconti Lincei. Scienze Fisiche e Naturali, 30, 611–621.
  • Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M.R. (2018). Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 10(57).
  • Dahoumane, S.A., Mechouet, M., Alvarez, F.J., Agathos, S.N., & Jeffryes, C. (2016). Microalgae: An Outstanding Tool in Nanotechnology. Bionatura, 1(4),196-201.
  • Deb, A. & Sutradhar, A. (2024). Microalgal nanobiotechnology for biosynthesis of metallic nanoparticles: In-depth into the strategies, mechanism and nanofluidic hydrodynamics. Biocatalysis and Agricultural Biotechnology, 56, 103046.
  • Dhandapani, K.V., Anbumani, D.i Gandhi, A.D., Annamalai, P., Muthuvenkatachalam, B.S., Kavitha, P., & Ranganathan, B. (2020). Green Route for the synthesis of Zinc Oxide Nanoparticles from Melia azedarach Leaf Extract and Evaluation of Their Antioxidant and Antibacterial Activities. Biocatalysis and Agricultural Biotechnology, 24,101517.
  • Domingos, R.F., Rafiesi, Z., Monteiro, C.E., Khan, M.A.K. & Wilkinson, K.J. (2013). Agglomeration and dissolution of zinc oxide nanoparticles: role of pH, ionic strength and fulvic acid. Environmental Chemistry, 10, 306-312.
  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., & Smith F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Division of Biochemistry, 28(3), 350-356.
  • Fakhari, S., Jamzad, M., & Fard, H.K. (2019). Green synthesis of zinc oxide nanoparticles: a comparison. Green Chemistry Letters and Reviews, 12(1), 19-24.
  • Fernandes, C., Jathar, M., Sawant, B.K.S. & Warde, T. (2023). Scale-Up of Nanoparticle Manufacturing Process. In: Jindal, A.B. (eds) Pharmaceutical Process Engineering and Scale-up Principles. AAPS Introductions in the Pharmaceutical Sciences, 13. Springer, Cham. https://doi.org/10.1007/978-3-031-31380-6_12.
  • Fuentes, M.M.R., FernaÂndez, G.G.A., PeÂrez, J.A.S., & Guerrero, J.L.G. (2000). Biomass nutrient pro®les of the microalga Porphyridium cruentum. Food Chemistry, 70, 345-353.
  • Gallego, R., Martínez, M., Cifuentes, A., Ibáñez, E., & Herrero, M. (2019). Development of a Green Downstream Process for the Valorization of Porphyridium cruentum Biomass. Molecules, 24, 1564.
  • Gallón, S.M.N., Alpaslan, E., Wang, M., Larese-Casanova,P., Londono, M.E., Atehortua, L., Pavon, J.J., & Webster, T.J. (2019). Characterization and Study of the Antibacterial Mechanisms of Silver Nanoparticles Prepared with Microalgal Exopolysaccharides. Materials Science&Engineering, C99, 685-695.
  • Gupta, D., Boora, A., Thakur, A. & Gupta, T.K. (2023). Green and sustainable synthesis of nanomaterials: Recent advancements and limitations. Environmental Research, 231, 3.
  • Jena, J., Pradhan, N., Dash, B.P., Panda, P.K., & Mishra, B.K. (2015). Pigment Mediated Biogenic Synthesis of Silver Nanoparticles Using Diatom Amphora sp. and its Antimicrobial Activity. Journal of Saudi Chemical Society, 19, 661-666.
  • Jeon, M.S., Han, S., Park, Y.H., Kim, H.S., & Choi, Y. (2021). Rapid green synthesis of silver nanoparticles using sulfated polysaccharides originating from Porphyridium cruentum UTEX 161: evaluation of antibacterial and catalytic activities. Journal of Applied Phycology, 33, 3091–3101.
  • Kandav, G & Sharma, T. (2024). Green synthesis: an ecofriendly approach for metallic nanoparticles synthesis. Particulate Science and Technology, 42(5), 874–894.
  • Karpagavinayagam, P., & Vedhi, C. (2019). Green Synthesis of Iron Oxide Nanoparticles Using Avicennia marina Flower Extract. Vacuum, 160, 286-292.
  • Kathiraven, T., Sundaramanickam, A., Shanmugam, N., & Balasubramanian, T. (2015). Green Synthesis of Silver Nanoparticles Using Marine Algae Caulerpa racemosa and Their Antibacterial Activity Against Some Human Pathogens. Appl. Nanosci., 5, 499-504.
  • Krishnamoorthy, K., Jayaraman, S., Krishnamoorthy, R., Manoharadas, S., Alshuniaber, M.A., Vikas, B., & Veeraraghavan, V.P. (2023). Green synthesis and evaluation of antimicrobial, antioxidant, anti-inflammatory, and anti-diabetic activities of silver nanoparticles from Argyreia nervosa leaf extract: An invitro study. Journal of King Saud University – Science, 35, 102955.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein Measurement with Folin-phenol Reagent. Journal of Biochemical Engineering, 193, 265-275.
  • Lu, J., Ali, H., Hurh, J., Han, Y., Batjikh, I., Rupa, E.J., Anandapadmanaban, G., Park, J.K., & Yang, D.C. (2019). The Assessment of Photocatalytic Activity of Zinc Oxide Nanoparticles from the Roots of Codonopsis Lanceolata Synthesized by One-Pot Green Synthesis Method. Optik- International Journal for Light and Electron Optics, 184, 82-89.
  • McNamara, K., & Tofail, S.A.M. (2017). Nanoparticles in biomedical applications. Advances in Physics: X, 2(1), 54–88.
  • Merin, D.D., Prakash, S., & Bhimba, B.V. (2010). Antibacterial Screening of Silver Nanoparticles Synthesized by Marine Micro Algae. Asian Pacific Journal of Tropical Medicine, 797-799.
  • Mhatre, A., Navale, M., Trivedi, N., Pandit, R., & Lali A.M. (2018). Pilot Scale Flat Panel Photobioreactor System for Mass Production of Ulva lactuca (Chlorophyta). Bioresource Technology, 249, 582-291.
  • Mubarak Ali, D., Sasikala, M., Gunasekaran, M., & Thajuddin, N. (2011). Biosynthesis and Characterization of Silver Nanoparticles Using Marine Cyanobacterium, Oscıllatorıa willei Ntdm01. Digest Journal of Nanomaterials and Biostructures, 6(2), 385-390.
  • Murillo-Rábago, E.I., Vilchis-Nestor, A.R., Juarez-Moreno, K., Garcia-Marin, L.E., Quester, K., & Castro-Longoria, E. (2022). Optimized Synthesis of Small and Stable Silver Nanoparticles Using Intracellular and Extracellular Components of Fungi: An Alternative for Bacterial Inhibition. Antibiotics, 11, 800.
  • Mutaf, T., Çalışkan, G., Meydan, C., Öncel, S.Ş. & Elibol, M. (2020). Biogenic Nanoparticle Synthesis Using Marine Alga Schizochytrium sp. IFMBE Proceedings, 73. https://doi.org/10.1007/978-3-030-17971-7_33.
  • Mutaf, T., Caliskan, G., Ozel, H., Akagac, G., Oncel, S.Ş., & Elibol, M. (2023). Green synthesis of titanium nanoparticles using a sustainable microalgal metabolite solution for potential biotechnological activities. Asia-Pac J Chem Eng., 18:e2954.
  • Patel, V., Berthold, D., Puranik, P., & Gantar, M. (2015). Screening of Cyanobacteria and Microalgae for Their Ability to Synthesize Silver Nanoparticles with Antibacterial Activity. Biotechnology Reports, 5, 112-119.
  • Prabha, S., Arya, G., Chandra, R., Ahmed, B., & Nimesh, S. (2016). Effect of size on biological properties of nanoparticles employed in gene delivery. Artificial Cells, Nanomedicine, and Biotechnology, 44, 83–91.
  • Rani, N., Rani, S., Patel, H., Bhavna, Yadav, S., Saini, M., Rewat, S. & Saini, K. (2023). Characterization and investigation of antioxidant and antimicrobial activity of zinc oxide nanoparticles prepared using leaves extract of Nyctanthesarbor-tristis. Inorganic Chemistry Communications, 150, 110516.
  • Restrepo, C.V., & Villa, C.C. (2021). Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review. Environmental Nanotechnology, Monitoring & Management, 15, 100428.
  • Rinawati, M., Sari, L.A., & Pursetyo, K.T. (2020). Chlorophyll and carotenoids analysis spectrophotometer using method on microalgae. IOP Conf. Series: Earth and Environmental Science, 441, 012056.
  • Ruiz-Ruiz, F., Benavides, J., & Rito-Palomares, M. (2013). Scaling-up of a B-phycoerythrin production and purification bioprocess involving aqueous two-phase systems: Practical experiences. Process Biochemistry, 48, 738–745.
  • Salem, D.M.S.A., Ismail, M.M., & Aly-Eldeen, A. (2019). Biogenic Synthesis and Antimicrobial Potency of Iron Oxide (Fe3O4) Nanoparticles Using Algae Harvested from the Mediterranean Sea, Egypt. Egyptian Journal of Aquatic Research, 45, 197-204.
  • Saif, S., Tahir, A., & Chen, Y. (2016). Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications. Nanomaterials, 6(209).
  • Sánchez-Saavedra, M.P., Castro-Ochoa, F.Y., Nava-Ruiz, V.M., Ruiz-Güereca, D.A., Villagómez-Aranda, A.L., Siqueiros-Vargas, F., & Molina-Cárdenas, C.A. (2018). Effects of nitrogen source and irradiance on Porphyridium cruentum. J Appl Phycol, 30, 783–792.
  • Senapati, S., Syed, A., Moeez, S., Kumar, A., & Ahmad, A. (2012). Intracellular Synthesis of Gold Nanoparticles Using Alga Tetraselmis kochinensis. Materials Letters, 79, 116-118.
  • Sharifiaghdam, M., Shaabani, E., Asghari, F. & Faridi-Majidi, R. (2021). Chitosan coated metallic nanoparticles with stability, antioxidant, and antibacterial properties: Potential for wound healing application. J Appl Polym Sci., 139:e51766.
  • Sharma, B., Purkayastha, D.D., Hazra, S., Thajamanbi, M., Bhattacharjee, C.R., Ghosh, N.N., & Rout, J. (2014). Biosynthesis of Fluorescent Gold Nanoparticles Using an Edible Freshwater Red Alga, Lemanea fluviatilis (L.) C.Ag. and Antioxidant Activity of Biomatrix Loaded Nanoparticles. Bioprocess Biosyst Eng., 37, 2559–2565.
  • Shumi, G., Demissie, T.B., Eswaramoorthy, R., Bogale, R.F., Kenasa, G. & Desalegn, T. (2023). Biosynthesis of Silver Nanoparticles Functionalized with Histidine and Phenylalanine Amino Acids for Potential Antioxidant and Antibacterial Activities. ACS Omega, 8, 24371−24386.
  • Singh, P., Kim, Y.J., Zhang, D., & Yang, D.C. (2016). Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends in Biotechnology, 34(7), 588-599.
  • Soleimani, M., & Habibi-Pirkoohi, M. (2017). Biosynthesis of Silver Nanoparticles using Chlorella vulgaris and Evaluation of the Antibacterial Efficacy Against Staphylococcus aureus. Avicenna Journal of Medical, Biotechnology, 9(3), 120-125.
  • Stanier, R.Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and Properties of Unicellular Blue-Green Algae (Order Chroococcales). Bacteriological Reviews, 35(2), 171-205.
  • Subhapriya, S., & Gomathipriya, P. (2018). Green Synthesis of Titanium Dioxide (TiO2) Nanoparticles by Trigonella foenum-graecum Extract and its Antimicrobial Properties. Microbial Pathogenesis, 116, 215-220.
  • Tounsi, L., Ben Hlima, H., Fendri, I., Abdelkafi, S. & Michaud, P. (2024). Photoautotrophic growth and accumulation of macromolecules by Porphyridium cruentum UTEX 161 depending on culture media. Biomass Conv. Bioref., 14, 26323–26340.
  • Vijayaram, S., Razafndralambo, H., Sun, Y.Z., Vasantharaj, S., Ghafarifarsani, H., Hoseinifar, S.H. & Raeeszadeh, M. (2024). Applications of Green Synthesized Metal Nanoparticles — a Review. Biological Trace Element Research, 202, 360–386.
  • Wishkerman, A., Arad, M., & Shoshana, A. (2017). Production of Silver Nanoparticles by the Diatom Phaeodactylum tricornutum. Nanotechnology VIII, 10248.
  • Yedoti, V. & Supraja, N. (2024). A Review on Algal Mediated Synthesized Metallic Nanoparticles: An Eco-Friendly Approach for Sustainable Nanotechnology. Current Journal of Applied Science and Technology, 43(6), 1-10.
There are 59 citations in total.

Details

Primary Language English
Subjects Nanobiotechnology
Journal Section Research Articles
Authors

Tuğçe Mutaf Kılıç 0000-0002-4195-4607

Gülizar Çalışkan Bilgin 0000-0001-6221-9495

Suphi Öncel 0000-0003-2817-2296

Murat Elibol 0000-0002-6756-6290

Project Number 117M052
Early Pub Date July 5, 2025
Publication Date August 21, 2025
Submission Date July 31, 2024
Acceptance Date June 24, 2025
Published in Issue Year 2025 Volume: 34 Issue: SI

Cite

APA Mutaf Kılıç, T., Çalışkan Bilgin, G., Öncel, S., Elibol, M. (2025). Porphyridium cruentum as a biological component for the green synthesis of metal nanoparticles and for the evaluation of their antimicrobial activity. Biotech Studies, 34(SI), 83-92. https://doi.org/10.38042/biotechstudies.1735385


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services