Review
BibTex RIS Cite

Year 2026, Volume: 35 Issue: 1, 10 - 24
https://doi.org/10.38042/biotechstudies.1757098

Abstract

References

  • Alanazi, S., Alenzi, N., Alenazi, F., Tabassum, H., & Watson, D. (2021). Chemical characterization of Saudi propolis and its antiparasitic and anticancer properties. Scientific Reports, 11(1), 5390. https://doi.org/10.1038/s41598-021-84717-5
  • Ali, A. M., & Kunugi, H. (2020). Apitherapy for Age-Related Skeletal Muscle Dysfunction (Sarcopenia): A Review on the Effects of Royal Jelly, Propolis, and Bee Pollen. Foods, 9(10), 1362. https://doi.org/10.3390/foods9101362
  • Anjum, S. I., Ullah, A., Khan, K. A., Attaullah, M., Khan, H., Ali, H., Bashir, M. A., Tahir, M., Ansari, M. J., Ghramh, H. A., Adgaba, N., & Dash, C. K. (2019). Composition and functional properties of propolis (bee glue): A review. Saudi Journal of Biological Sciences, 26(7), 1695–1703. https://doi.org/10.1016/j.sjbs.2018.08.013
  • Asadi, N., Sadeghzadeh, H., Rahmani Del Bakhshayesh, A., Nezami Asl, A., Dadashpour, M., Karimi Hajishoreh, N., Kaamyabi, S., & Akbarzadeh, A. (2023). Preparation and characterization of propolis reinforced eggshell membrane/ GelMA composite hydrogel for biomedical applications. BMC Biotechnology, 23(1), 21. https://doi.org/10.1186/s12896-023-00788-4
  • Aytekin, A. A., Tuncay Tanrıverdi, S., Aydın Köse, F., Kart, D., Eroğlu, İ., & Özer, Ö. (2020). Propolis loaded liposomes: evaluation of antimicrobial and antioxidant activities. Journal of Liposome Research, 30(2), 107–116. https://doi.org/10.1080/08982104.2019.1599012
  • Bava, R., Castagna, F., Lupia, C., Poerio, G., Liguori, G., Lombardi, R., Naturale, M. D., Bulotta, R. M., Biondi, V., Passantino, A., Britti, D., Statti, G., & Palma, E. (2024). Hive Products: Composition, Pharmacological Properties, and Therapeutic Applications. Pharmaceuticals, 17(5), 646. https://doi.org/10.3390/ph17050646
  • Bezerra, F. W. F., Silva, J. de M. E., Fontanari, G. G., Oliveira, J. A. R. de, Rai, M., Chisté, R. C., & Martins, L. H. da S. (2023). Sustainable Applications of Nanopropolis to Combat Foodborne Illnesses. Molecules (Basel, Switzerland), 28(19). https://doi.org/10.3390/molecules28196785
  • Bozzuto, G., & Molinari, A. (2015). Liposomes as nanomedical devices. International Journal of Nanomedicine, 975. https://doi.org/10.2147/IJN.S68861
  • Bruckmann, F. d. S., Nunes, F. B., Salles, T. d. R., Franco, C., Cadoná, F. C., & Bohn Rhoden, C. R. (2022). Biological Applications of Silica-Based Nanoparticles. Magnetochemistry, 8(10), 131. https://doi.org/10.3390/magnetochemistry8100131
  • Castillo RR, & Vallet-Regí M. (2021). Recent Advances Toward the Use of Mesoporous Silica Nanoparticles for the Treatment of Bacterial Infections. Int J Nanomedicine,. 16:4409-4430. https://doi.org/10.2147/IJN.S273064
  • Cetin, E. O., Salmanoglu, D. S., Ozden, I., Ors-Kumoglu, G., Akar, S., Demirozer, M., Karabey, F., Kilic, K. D., Kirilmaz, L., Uyanikgil, Y., & Sevimli-Gur, C. (2022). Preparation of Ethanol Extract of Propolis Loaded Niosome Formulation and Evaluation of Effects on Different Cancer Cell Lines. Nutrition and Cancer, 74(1), 265–277. https://doi.org/10.1080/01635581.2021.1876889
  • Chehelgerdi, M., & Doosti, A. (2020). Effect of the cagW-based gene vaccine on the immunologic properties of BALB/c mouse: An efficient candidate for Helicobacter pylori DNA vaccine. Journal of Nanobiotechnology, 18(1). https://doi.org/10.1186/s12951-020-00618-1
  • Chibuye, B., Singh, I. Sen, Ramasamy, S., & Maseka, K. K. (2024). Natural antioxidants: A comprehensive elucidation of their sources, mechanisms, and applications in health. Next Research, 1(2), 100086. https://doi.org/10.1016/j.nexres.2024.100086
  • Czyżewska, U., Siemionow, K., Zaręba, I., & Miltyk, W. (2016). Proapoptotic Activity of Propolis and Their Components on Human Tongue Squamous Cell Carcinoma Cell Line (CAL-27). PLOS ONE, 11(6), e0157091. https://doi.org/10.1371/journal.pone.0157091
  • de Lima, G. G., de Souza, R. O., Bozzi, A. D., Poplawska, M. A., Devine, D. M., & Nugent, M. J. D. (2016). Extraction Method Plays Critical Role in Antibacterial Activity of Propolis-Loaded Hydrogels. Journal of Pharmaceutical Sciences, 105(3), 1248–1257. https://doi.org/10.1016/j.xphs.2015.12.027
  • de Morais, P. B., de Almeida, G. S., de Camargo Andrade, A. F., Orsi, R. de O., Zambuzzi, W. F., & Fernandes, C. J. D. C. (2025). Modulation of HIF-1α and TNF-α in pre-osteoblasts treated with alcohol extract of propolis: Implications for cellular response and signaling pathways. Tissue & Cell, 94, 102784. https://doi.org/10.1016/j.tice.2025.102784
  • Demir, S., Aliyazicioglu, Y., Turan, I., Misir, S., Mentese, A., Yaman, S. O., Akbulut, K., Kilinc, K., & Deger, O. (2016). Antiproliferative and proapoptotic activity of Turkish propolis on human lung cancer cell line. Nutrition and Cancer, 68(1), 165–172. https://doi.org/10.1080/01635581.2016.1115096
  • Diab, S. E., Tayea, N. A., Elwakil, B. H., Elshewemi, S. S., Gad, A. A. E. M., Abdulmalek, S. A., Ghareeb, D. A., & Olama, Z. A. (2024). In vitro and in vivo anti-colorectal cancer effect of the newly synthesized sericin/propolis/fluorouracil nanoplatform through modulation of PI3K/AKT/mTOR pathway. Scientific Reports, 14(1), 2433. https://doi.org/10.1038/s41598-024-52722-z
  • Elbaz, N. M., Khalil, I. A., Abd-Rabou, A. A., & El-Sherbiny, I. M. (2016). Chitosan-based nano-in-microparticle carriers for enhanced oral delivery and anticancer activity of propolis. International Journal of Biological Macromolecules, 92, 254–269. https://doi.org/10.1016/j.ijbiomac.2016.07.024
  • El-Seedi, H. R., Eid, N., Abd El-Wahed, A. A., Rateb, M. E., Afifi, H. S., Algethami, A. F., Zhao, C., Al Naggar, Y., Alsharif, S. M., Tahir, H. E., Xu, B., Wang, K., & Khalifa, S. A. M. (2021). Honey Bee Products: Preclinical and Clinical Studies of Their Anti-inflammatory and Immunomodulatory Properties. Frontiers in Nutrition, 8, 761267. https://doi.org/10.3389/fnut.2021.761267
  • Elumalai, P., Muninathan, N., Megalatha, S. T., Suresh, A., Kumar, K. S., Jhansi, N., Kalaivani, K., & Krishnamoorthy, G. (2022). An Insight into Anticancer Effect of Propolis and Its Constituents: A Review of Molecular Mechanisms. Evidence-Based Complementary and Alternative Medicine : ECAM, 2022, 5901191. https://doi.org/10.1155/2022/5901191
  • Escriche, I., & Juan-Borrás, M. (2018). Standardizing the analysis of phenolic profile in propolis. Food Research International, 106, 834–841. https://doi.org/10.1016/j.foodres.2018.01.055
  • Fritea, L., Pasca, P. M., Vlase, L., Gheldiu, A.-M., Moldovan, L., Banica, F., Dobjanschi, L., & Cavalu, S. (2021). Electrochemical Methods for Evaluation of Antioxidant Properties of Propolis Extract Incorporated in Chitosan Nanoparticles. Materiale Plastice, 57(4), 96–108. https://doi.org/10.37358/MP.20.4.5410
  • Gulati, N., Dua, K., & Dureja, H. (2022). Advanced drug delivery systems for targeting obesity. In Drug Delivery Systems for Metabolic Disorders (pp. 207–215). Elsevier. https://doi.org/10.1016/B978-0-323-99616-7.00028-1
  • Herdiana, Y. (2025). Nanoparticles of natural product-derived medicines: Beyond the pandemic. Heliyon, 11(4), e42739. https://doi.org/10.1016/j.heliyon.2025.e42739
  • Himri, I., & Guaadaoui, A. (2018). Cell and organ drug targeting. In Nanostructures for the Engineering of Cells, Tissues and Organs (pp. 1–66). Elsevier. https://doi.org/10.1016/B978-0-12-813665-2.00001-6
  • Iadnut, A., Mamoon, K., Thammasit, P., Pawichai, S., Tima, S., Preechasuth, K., Kaewkod, T., Tragoolpua, Y., & Tragoolpua, K. (2019). In Vitro Antifungal and Antivirulence Activities of Biologically Synthesized Ethanolic Extract of Propolis-Loaded PLGA Nanoparticles against Candida albicans. Evidence-Based Complementary and Alternative Medicine, 2019, 1–14. https://doi.org/10.1155/2019/3715481
  • İpek, N., Pınarbaşı, B., & Güneş Bayır, A. (2022). The Place and Importance of Propolis in Cancer Immunotherapy. Bezmialem Science, 10(1), 123–130. https://doi.org/10.14235/bas.galenos.2021.4790
  • Irigoiti, Y., Navarro, A., Yamul, D., Libonatti, C., Tabera, A., & Basualdo, M. (2021). The use of propolis as a functional food ingredient: A review. Trends in Food Science & Technology, 115, 297–306. https://doi.org/10.1016/j.tifs.2021.06.041
  • Jaiswal, M., Dudhe, R., & Sharma, P. K. (2015). Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech, 5(2), 123–127. https://doi.org/10.1007/s13205-014-0214-0
  • Jayakumar, R., Ramya, C., Kumar, P. T. S., Snima, K. S., Lakshmanan, V.-K., & Nair, S. V. (2013). <I>In Vitro</I> Anti-Cancerous and Anti-Microbial Activity of Propolis Nanoparticles. Journal of Nanopharmaceutics and Drug Delivery, 1(2), 150–156. https://doi.org/10.1166/jnd.2013.1004
  • Justino, I. A., Furlan, J. P. R., Ferreira, I. R. S., Marincek, A., Aldana-Mejía, J. A., Tucci, L. F. F., Bastos, J. K., Stehling, E. G., Marzocchi-Machado, C. M., & Marcato, P. D. (2024). Antimicrobial, Antioxidant, and Anticancer Effects of Nanoencapsulated Brazilian Red Propolis Extract: Applications in Cancer Therapy. Processes, 12(12), 2856. https://doi.org/10.3390/pr12122856
  • Khalil, I., Yehye, W. A., Etxeberria, A. E., Alhadi, A. A., Dezfooli, S. M., Julkapli, N. B. M., Basirun, W. J., & Seyfoddin, A. (2019). Nanoantioxidants: Recent Trends in Antioxidant Delivery Applications. Antioxidants, 9(1), 24. https://doi.org/10.3390/antiox9010024
  • Kocot, J., Kiełczykowska, M., Luchowska-Kocot, D., Kurzepa, J., & Musik, I. (2018). Antioxidant Potential of Propolis, Bee Pollen, and Royal Jelly: Possible Medical Application. Oxidative Medicine and Cellular Longevity, 2018, 7074209. https://doi.org/10.1155/2018/7074209
  • Kuo, Y.-Y., Jim, W.-T., Su, L.-C., Chung, C.-J., Lin, C.-Y., Huo, C., Tseng, J.-C., Huang, S.-H., Lai, C.-J., Chen, B.-C., Wang, B.-J., Chan, T.-M., Lin, H.-P., Chang, W.-S. W., Chang, C.-R., & Chuu, C.-P. (2015). Caffeic Acid phenethyl ester is a potential therapeutic agent for oral cancer. International Journal of Molecular Sciences, 16(5), 10748–10766. https://doi.org/10.3390/ijms160510748
  • Lesmana, R., Tandean, S., Christoper, A., Suwantika, A. A., Wathoni, N., Abdulah, R., Fearnley, J., Bankova, V., & Zulhendri, F. (2024). Propolis as an autophagy modulator in relation to its roles in redox balance and inflammation regulation. Biomedicine & Pharmacotherapy, 175, 116745. https://doi.org/10.1016/j.biopha.2024.116745
  • Loira-Pastoriza, C., Todoroff, J., & Vanbever, R. (2014). Delivery strategies for sustained drug release in the lungs. Advanced Drug Delivery Reviews, 75, 81–91. https://doi.org/10.1016/j.addr.2014.05.017
  • Ma, X., Tian, Y., Yang, R., Wang, H., Allahou, L. W., Chang, J., Williams, G., Knowles, J. C., & Poma, A. (2024). Nanotechnology in healthcare, and its safety and environmental risks. Journal of Nanobiotechnology, 22(1), 715. https://doi.org/10.1186/s12951-024-02901-x
  • Masadah, R., Ikram, D., & Rauf, S. (2021). Effects of propolis and its bioactive components on breast cancer cell pathways and the molecular mechanisms involved. Breast Disease, 40(s1), S15–S25. https://doi.org/10.3233/BD-219003
  • Mendez-Pfeiffer, P., Juarez, J., Hernandez, J., Taboada, P., Virués, C., Valencia, D., & Velazquez, C. (2021). Nanocarriers as drug delivery systems for propolis: A therapeutic approach. Journal of Drug Delivery Science and Technology, 65, 102762. https://doi.org/10.1016/j.jddst.2021.102762
  • Meneghelli, C., Joaquim, L. S. D., Félix, G. L. Q., Somensi, A., Tomazzoli, M., da Silva, D. A., Berti, F. V., Veleirinho, M. B. R., Recouvreux, D. de O. S., de Mattos Zeri, A. C., Dias, P. F., & Maraschin, M. (2013). Southern Brazilian autumnal propolis shows anti-angiogenic activity: an in vitro and in vivo study. Microvascular Research, 88, 1–11. https://doi.org/10.1016/j.mvr.2013.03.003
  • Mirzaei, S., Gholami, M. H., Zabolian, A., Saleki, H., Farahani, M. V., Hamzehlou, S., Far, F. B., Sharifzadeh, S. O., Samarghandian, S., Khan, H., Aref, A. R., Ashrafizadeh, M., Zarrabi, A., & Sethi, G. (2021). Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacological Research, 171, 105759. https://doi.org/10.1016/j.phrs.2021.105759
  • Motomura, M., Kwon, K. M., Suh, S.-J., Lee, Y.-C., Kim, Y.-K., Lee, I.-S., … Kim, C.-H. (2008). Propolis induces cell cycle arrest and apoptosis in human leukemic U937 cells through Bcl-2/Bax regulation. Environmental Toxicology and Pharmacology, 26(1), 61–67. https://doi.org/10.1016/j.etap.2008.01.008
  • Moulahoum, H., Ghorbanizamani, F., Beduk, T., Beduk, D., Ozufuklar, O., Guler Celik, E., & Timur, S. (2023). Emerging trends in nanomaterial design for the development of point-of-care platforms and practical applications. Journal of Pharmaceutical and Biomedical Analysis, 235, 115623. https://doi.org/10.1016/j.jpba.2023.115623
  • Najahi-Missaoui, W., Arnold, R. D., & Cummings, B. S. (2020). Safe Nanoparticles: Are We There Yet? International Journal of Molecular Sciences, 22(1). https://doi.org/10.3390/ijms22010385
  • Natarajan, K., Singh, S., Burke, T. R., Grunberger, D., & Aggarwal, B. B. (1996). Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proceedings of the National Academy of Sciences, 93(17), 9090–9095. https://doi.org/10.1073/pnas.93.17.9090
  • Noore, S., Rastogi, N. K., O’Donnell, C., & Tiwari, B. (2021). Novel Bioactive Extraction and Nano-Encapsulation. Encyclopedia, 1(3), 632–664. https://doi.org/10.3390/encyclopedia1030052
  • Nori, M. P., Favaro-Trindade, C. S., Matias de Alencar, S., Thomazini, M., de Camargo Balieiro, J. C., & Contreras Castillo, C. J. (2011). Microencapsulation of propolis extract by complex coacervation. LWT - Food Science and Technology, 44(2), 429–435. https://doi.org/10.1016/j.lwt.2010.09.010
  • Ong, T. H., Chitra, E., Ramamurthy, S., Siddalingam, R. P., Yuen, K. H., Ambu, S. P., & Davamani, F. (2017). Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms. PLOS ONE, 12(3), e0174888. https://doi.org/10.1371/journal.pone.0174888
  • Oršolić, N., & Jazvinšćak Jembrek, M. (2022). Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer. International Journal of Molecular Sciences, 23(18). https://doi.org/10.3390/ijms231810479
  • Park, S.-I., Ohta, T., Kumazawa, S., Jun, M., & Ahn, M.-R. (2014). Korean propolis suppresses angiogenesis through inhibition of tube formation and endothelial cell proliferation. Natural product communications, 9(4), 555–560. http://www.ncbi.nlm.nih.gov/pubmed/24868883
  • Pasupuleti, V. R., Sammugam, L., Ramesh, N., & Gan, S. H. (2017). Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxidative Medicine and Cellular Longevity, 2017, 1259510. https://doi.org/10.1155/2017/1259510
  • Patel, S. (2016). Emerging Adjuvant Therapy for Cancer: Propolis and its Constituents. Journal of Dietary Supplements, 13(3), 245–268. https://doi.org/10.3109/19390211.2015.1008614
  • Perinelli, D. R., Palmieri, G. F., Cespi, M., & Bonacucina, G. (2020). Encapsulation of Flavours and Fragrances into Polymeric Capsules and Cyclodextrins Inclusion Complexes: An Update. Molecules, 25(24), 5878. https://doi.org/10.3390/molecules25245878
  • Rai, V. K., Mishra, N., Yadav, K. S., & Yadav, N. P. (2018). Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. Journal of Controlled Release, 270, 203–225. https://doi.org/10.1016/j.jconrel.2017.11.049
  • Revadihal, K., Dey, A., Amireddy, S., Roy, R., Datta, S., Purushottam Pai, V., Radhika, S., Akash, N., & Roshinee, R. (2025). A REVIEW ON TARGETED DRUG DELIVERY SYSTEMS IN ONCOLOGY. A REVIEW ON TARGETED DRUG DELIVERY SYSTEMS IN ONCOLOGY. World Journal of Pharmaceutical Science and Research, 4(1), 141. https://doi.org/10.5281/zenodo.14784473
  • Vagish Kumar, L. S. (2014). Propolis in dentistry and oral cancer management. North American Journal of Medical Sciences, 6(6), 250–259. https://doi.org/10.4103/1947-2714.134369
  • Sahar, N. (2020). Biochemical and Biological Evaluation of Propolis.
  • Sánchez-López, E., Guerra, M., Dias-Ferreira, J., Lopez-Machado, A., Ettcheto, M., Cano, A., Espina, M., Camins, A., Garcia, M. L., & Souto, E. B. (2019). Current Applications of Nanoemulsions in Cancer Therapeutics. Nanomaterials (Basel, Switzerland), 9(6). https://doi.org/10.3390/nano9060821
  • Sawicka, D., Car, H., Borawska, M. H., & Nikliński, J. (2012). The anticancer activity of propolis. Folia Histochemica et Cytobiologica, 50(1), 25–37. https://doi.org/10.2478/18693
  • Shaker, S. A., Alshufta, S. M., Gowayed, M. A., El-Salamouni, N. S., Bassam, S. M., Megahed, M. A., & El-Tahan, R. A. (2023). Propolis-loaded nanostructured lipid carriers halt breast cancer progression through miRNA-223 related pathways: an in-vitro/in-vivo experiment. Scientific Reports, 13(1), 15752. https://doi.org/10.1038/s41598-023-42709-7
  • Silva, C. C. F. da, Salatino, A., Motta, L. B. da, Negri, G., & Salatino, M. L. F. (2019). Chemical characterization, antioxidant and anti-HIV activities of a Brazilian propolis from Ceará state. Revista Brasileira de Farmacognosia, 29(3), 309–318. https://doi.org/10.1016/j.bjp.2019.04.001
  • Subaşı-Zarbaliyev, B., Kutlu, G., & Törnük, F. (2023). Polyvinyl alcohol nanoparticles loaded with propolis extract: Fabrication, characterization and antimicrobial activity. ADMET and DMPK. https://doi.org/10.5599/admet.1740
  • Sun, C., Wu, Z., Wang, Z., & Zhang, H. (2015). Effect of Ethanol/Water Solvents on Phenolic Profiles and Antioxidant Properties of Beijing Propolis Extracts. Evidence-Based Complementary and Alternative Medicine : ECAM, 2015, 595393. https://doi.org/10.1155/2015/595393
  • Sun, L., Liu, H., Ye, Y., Lei, Y., Islam, R., Tan, S., Tong, R., Miao, Y.-B., & Cai, L. (2023). Smart nanoparticles for cancer therapy. Signal Transduction and Targeted Therapy, 8(1), 418. https://doi.org/10.1038/s41392-023-01642-x
  • Touzani, S., Embaslat, W., Imtara, H., Kmail, A., Kadan, S., Zaid, H., ElArabi, I., Badiaa, L., & Saad, B. (2019). In Vitro Evaluation of the Potential Use of Propolis as a Multitarget Therapeutic Product: Physicochemical Properties, Chemical Composition, and Immunomodulatory, Antibacterial, and Anticancer Properties. BioMed Research International, 2019, 4836378. https://doi.org/10.1155/2019/4836378
  • Valença, I., Morais-Santos, F., Miranda-Gonçalves, V., Ferreira, A. M., Almeida-Aguiar, C., & Baltazar, F. (2013). Portuguese propolis disturbs glycolytic metabolism of human colorectal cancer in vitro. BMC Complementary and Alternative Medicine, 13, 184. https://doi.org/10.1186/1472-6882-13-184
  • Valivand, N., Aravand, S., Lotfi, H., Esfahani, A. J., Ahmadpour-Yazdi, H., & Gheibi, N. (2024). Propolis: a natural compound with potential as an adjuvant in cancer therapy - a review of signaling pathways. Molecular Biology Reports, 51(1), 931. https://doi.org/10.1007/s11033-024-09807-9 Watabe, M., Hishikawa, K., Takayanagi, A., Shimizu, N., & Nakaki, T. (2004). Caffeic Acid Phenethyl Ester Induces Apoptosis by Inhibition of NFκB and Activation of Fas in Human Breast Cancer MCF-7 Cells. Journal of Biological Chemistry, 279(7), 6017–6026. https://doi.org/10.1074/jbc.M306040200
  • Wieczorek, P. P., Hudz, N., Yezerska, O., Horčinová-Sedláčková, V., Shanaida, M., Korytniuk, O., & Jasicka-Misiak, I. (2022). Chemical Variability and PharmacologicalPotential of Propolis as a Source for the Development of New Pharmaceutical Products. Molecules, 27(5), 1600. https://doi.org/10.3390/molecules27051600
  • Xuan, H., Li, Z., Yan, H., Sang, Q., Wang, K., He, Q., Wang, Y., & Hu, F. (2014). Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF‐7 and MDA‐MB‐231 Cells. Evidence-Based Complementary and Alternative Medicine, 2014(1). https://doi.org/10.1155/2014/280120

Nanotechnology assisted natural antioxidants: Applications of Propolis loaded nanocarriers in cancer therapy

Year 2026, Volume: 35 Issue: 1, 10 - 24
https://doi.org/10.38042/biotechstudies.1757098

Abstract

Apitherapy products, including honey, propolis, royal jelly, pollen, bee venom, and bee bread, are regarded as natural medicines with therapeutic effects on a variety of diseases. Among these, propolis has gained significant attention in medicine and pharmaceuticals due to its antioxidant, antimicrobial and anticancer properties, mainly attributed to its flavonoid and phenolic content. Its strong antioxidant and anticancer effects are associated with multiple mechanisms (apoptosis induction, cell proliferation suppression, antiangiogenesis, etc.). However, the clinical use of propolis remains restricted because of its poor solubility together with its unstable nature and inconsistent chemical composition. Nanotechnology offers effective solutions to these challenges by improving propolis stability, bioavailability, and targeted delivery. Therefore, incorporation of antioxidants derived from natural products with modern nanocarrier systems will provide a more effective and safer way to mitigate the impact of cancer therapies. This review aims to highlight current developments in propolis nanoencapsulation for cancer therapy, focusing on polymeric nanoparticles, lipid nanocarriers, nanoemulsions, etc. It further examines current nanoencapsulation methods and evaluates recent in vitro and in vivo studies on propolis nanoparticles as anticancer agents.

References

  • Alanazi, S., Alenzi, N., Alenazi, F., Tabassum, H., & Watson, D. (2021). Chemical characterization of Saudi propolis and its antiparasitic and anticancer properties. Scientific Reports, 11(1), 5390. https://doi.org/10.1038/s41598-021-84717-5
  • Ali, A. M., & Kunugi, H. (2020). Apitherapy for Age-Related Skeletal Muscle Dysfunction (Sarcopenia): A Review on the Effects of Royal Jelly, Propolis, and Bee Pollen. Foods, 9(10), 1362. https://doi.org/10.3390/foods9101362
  • Anjum, S. I., Ullah, A., Khan, K. A., Attaullah, M., Khan, H., Ali, H., Bashir, M. A., Tahir, M., Ansari, M. J., Ghramh, H. A., Adgaba, N., & Dash, C. K. (2019). Composition and functional properties of propolis (bee glue): A review. Saudi Journal of Biological Sciences, 26(7), 1695–1703. https://doi.org/10.1016/j.sjbs.2018.08.013
  • Asadi, N., Sadeghzadeh, H., Rahmani Del Bakhshayesh, A., Nezami Asl, A., Dadashpour, M., Karimi Hajishoreh, N., Kaamyabi, S., & Akbarzadeh, A. (2023). Preparation and characterization of propolis reinforced eggshell membrane/ GelMA composite hydrogel for biomedical applications. BMC Biotechnology, 23(1), 21. https://doi.org/10.1186/s12896-023-00788-4
  • Aytekin, A. A., Tuncay Tanrıverdi, S., Aydın Köse, F., Kart, D., Eroğlu, İ., & Özer, Ö. (2020). Propolis loaded liposomes: evaluation of antimicrobial and antioxidant activities. Journal of Liposome Research, 30(2), 107–116. https://doi.org/10.1080/08982104.2019.1599012
  • Bava, R., Castagna, F., Lupia, C., Poerio, G., Liguori, G., Lombardi, R., Naturale, M. D., Bulotta, R. M., Biondi, V., Passantino, A., Britti, D., Statti, G., & Palma, E. (2024). Hive Products: Composition, Pharmacological Properties, and Therapeutic Applications. Pharmaceuticals, 17(5), 646. https://doi.org/10.3390/ph17050646
  • Bezerra, F. W. F., Silva, J. de M. E., Fontanari, G. G., Oliveira, J. A. R. de, Rai, M., Chisté, R. C., & Martins, L. H. da S. (2023). Sustainable Applications of Nanopropolis to Combat Foodborne Illnesses. Molecules (Basel, Switzerland), 28(19). https://doi.org/10.3390/molecules28196785
  • Bozzuto, G., & Molinari, A. (2015). Liposomes as nanomedical devices. International Journal of Nanomedicine, 975. https://doi.org/10.2147/IJN.S68861
  • Bruckmann, F. d. S., Nunes, F. B., Salles, T. d. R., Franco, C., Cadoná, F. C., & Bohn Rhoden, C. R. (2022). Biological Applications of Silica-Based Nanoparticles. Magnetochemistry, 8(10), 131. https://doi.org/10.3390/magnetochemistry8100131
  • Castillo RR, & Vallet-Regí M. (2021). Recent Advances Toward the Use of Mesoporous Silica Nanoparticles for the Treatment of Bacterial Infections. Int J Nanomedicine,. 16:4409-4430. https://doi.org/10.2147/IJN.S273064
  • Cetin, E. O., Salmanoglu, D. S., Ozden, I., Ors-Kumoglu, G., Akar, S., Demirozer, M., Karabey, F., Kilic, K. D., Kirilmaz, L., Uyanikgil, Y., & Sevimli-Gur, C. (2022). Preparation of Ethanol Extract of Propolis Loaded Niosome Formulation and Evaluation of Effects on Different Cancer Cell Lines. Nutrition and Cancer, 74(1), 265–277. https://doi.org/10.1080/01635581.2021.1876889
  • Chehelgerdi, M., & Doosti, A. (2020). Effect of the cagW-based gene vaccine on the immunologic properties of BALB/c mouse: An efficient candidate for Helicobacter pylori DNA vaccine. Journal of Nanobiotechnology, 18(1). https://doi.org/10.1186/s12951-020-00618-1
  • Chibuye, B., Singh, I. Sen, Ramasamy, S., & Maseka, K. K. (2024). Natural antioxidants: A comprehensive elucidation of their sources, mechanisms, and applications in health. Next Research, 1(2), 100086. https://doi.org/10.1016/j.nexres.2024.100086
  • Czyżewska, U., Siemionow, K., Zaręba, I., & Miltyk, W. (2016). Proapoptotic Activity of Propolis and Their Components on Human Tongue Squamous Cell Carcinoma Cell Line (CAL-27). PLOS ONE, 11(6), e0157091. https://doi.org/10.1371/journal.pone.0157091
  • de Lima, G. G., de Souza, R. O., Bozzi, A. D., Poplawska, M. A., Devine, D. M., & Nugent, M. J. D. (2016). Extraction Method Plays Critical Role in Antibacterial Activity of Propolis-Loaded Hydrogels. Journal of Pharmaceutical Sciences, 105(3), 1248–1257. https://doi.org/10.1016/j.xphs.2015.12.027
  • de Morais, P. B., de Almeida, G. S., de Camargo Andrade, A. F., Orsi, R. de O., Zambuzzi, W. F., & Fernandes, C. J. D. C. (2025). Modulation of HIF-1α and TNF-α in pre-osteoblasts treated with alcohol extract of propolis: Implications for cellular response and signaling pathways. Tissue & Cell, 94, 102784. https://doi.org/10.1016/j.tice.2025.102784
  • Demir, S., Aliyazicioglu, Y., Turan, I., Misir, S., Mentese, A., Yaman, S. O., Akbulut, K., Kilinc, K., & Deger, O. (2016). Antiproliferative and proapoptotic activity of Turkish propolis on human lung cancer cell line. Nutrition and Cancer, 68(1), 165–172. https://doi.org/10.1080/01635581.2016.1115096
  • Diab, S. E., Tayea, N. A., Elwakil, B. H., Elshewemi, S. S., Gad, A. A. E. M., Abdulmalek, S. A., Ghareeb, D. A., & Olama, Z. A. (2024). In vitro and in vivo anti-colorectal cancer effect of the newly synthesized sericin/propolis/fluorouracil nanoplatform through modulation of PI3K/AKT/mTOR pathway. Scientific Reports, 14(1), 2433. https://doi.org/10.1038/s41598-024-52722-z
  • Elbaz, N. M., Khalil, I. A., Abd-Rabou, A. A., & El-Sherbiny, I. M. (2016). Chitosan-based nano-in-microparticle carriers for enhanced oral delivery and anticancer activity of propolis. International Journal of Biological Macromolecules, 92, 254–269. https://doi.org/10.1016/j.ijbiomac.2016.07.024
  • El-Seedi, H. R., Eid, N., Abd El-Wahed, A. A., Rateb, M. E., Afifi, H. S., Algethami, A. F., Zhao, C., Al Naggar, Y., Alsharif, S. M., Tahir, H. E., Xu, B., Wang, K., & Khalifa, S. A. M. (2021). Honey Bee Products: Preclinical and Clinical Studies of Their Anti-inflammatory and Immunomodulatory Properties. Frontiers in Nutrition, 8, 761267. https://doi.org/10.3389/fnut.2021.761267
  • Elumalai, P., Muninathan, N., Megalatha, S. T., Suresh, A., Kumar, K. S., Jhansi, N., Kalaivani, K., & Krishnamoorthy, G. (2022). An Insight into Anticancer Effect of Propolis and Its Constituents: A Review of Molecular Mechanisms. Evidence-Based Complementary and Alternative Medicine : ECAM, 2022, 5901191. https://doi.org/10.1155/2022/5901191
  • Escriche, I., & Juan-Borrás, M. (2018). Standardizing the analysis of phenolic profile in propolis. Food Research International, 106, 834–841. https://doi.org/10.1016/j.foodres.2018.01.055
  • Fritea, L., Pasca, P. M., Vlase, L., Gheldiu, A.-M., Moldovan, L., Banica, F., Dobjanschi, L., & Cavalu, S. (2021). Electrochemical Methods for Evaluation of Antioxidant Properties of Propolis Extract Incorporated in Chitosan Nanoparticles. Materiale Plastice, 57(4), 96–108. https://doi.org/10.37358/MP.20.4.5410
  • Gulati, N., Dua, K., & Dureja, H. (2022). Advanced drug delivery systems for targeting obesity. In Drug Delivery Systems for Metabolic Disorders (pp. 207–215). Elsevier. https://doi.org/10.1016/B978-0-323-99616-7.00028-1
  • Herdiana, Y. (2025). Nanoparticles of natural product-derived medicines: Beyond the pandemic. Heliyon, 11(4), e42739. https://doi.org/10.1016/j.heliyon.2025.e42739
  • Himri, I., & Guaadaoui, A. (2018). Cell and organ drug targeting. In Nanostructures for the Engineering of Cells, Tissues and Organs (pp. 1–66). Elsevier. https://doi.org/10.1016/B978-0-12-813665-2.00001-6
  • Iadnut, A., Mamoon, K., Thammasit, P., Pawichai, S., Tima, S., Preechasuth, K., Kaewkod, T., Tragoolpua, Y., & Tragoolpua, K. (2019). In Vitro Antifungal and Antivirulence Activities of Biologically Synthesized Ethanolic Extract of Propolis-Loaded PLGA Nanoparticles against Candida albicans. Evidence-Based Complementary and Alternative Medicine, 2019, 1–14. https://doi.org/10.1155/2019/3715481
  • İpek, N., Pınarbaşı, B., & Güneş Bayır, A. (2022). The Place and Importance of Propolis in Cancer Immunotherapy. Bezmialem Science, 10(1), 123–130. https://doi.org/10.14235/bas.galenos.2021.4790
  • Irigoiti, Y., Navarro, A., Yamul, D., Libonatti, C., Tabera, A., & Basualdo, M. (2021). The use of propolis as a functional food ingredient: A review. Trends in Food Science & Technology, 115, 297–306. https://doi.org/10.1016/j.tifs.2021.06.041
  • Jaiswal, M., Dudhe, R., & Sharma, P. K. (2015). Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech, 5(2), 123–127. https://doi.org/10.1007/s13205-014-0214-0
  • Jayakumar, R., Ramya, C., Kumar, P. T. S., Snima, K. S., Lakshmanan, V.-K., & Nair, S. V. (2013). <I>In Vitro</I> Anti-Cancerous and Anti-Microbial Activity of Propolis Nanoparticles. Journal of Nanopharmaceutics and Drug Delivery, 1(2), 150–156. https://doi.org/10.1166/jnd.2013.1004
  • Justino, I. A., Furlan, J. P. R., Ferreira, I. R. S., Marincek, A., Aldana-Mejía, J. A., Tucci, L. F. F., Bastos, J. K., Stehling, E. G., Marzocchi-Machado, C. M., & Marcato, P. D. (2024). Antimicrobial, Antioxidant, and Anticancer Effects of Nanoencapsulated Brazilian Red Propolis Extract: Applications in Cancer Therapy. Processes, 12(12), 2856. https://doi.org/10.3390/pr12122856
  • Khalil, I., Yehye, W. A., Etxeberria, A. E., Alhadi, A. A., Dezfooli, S. M., Julkapli, N. B. M., Basirun, W. J., & Seyfoddin, A. (2019). Nanoantioxidants: Recent Trends in Antioxidant Delivery Applications. Antioxidants, 9(1), 24. https://doi.org/10.3390/antiox9010024
  • Kocot, J., Kiełczykowska, M., Luchowska-Kocot, D., Kurzepa, J., & Musik, I. (2018). Antioxidant Potential of Propolis, Bee Pollen, and Royal Jelly: Possible Medical Application. Oxidative Medicine and Cellular Longevity, 2018, 7074209. https://doi.org/10.1155/2018/7074209
  • Kuo, Y.-Y., Jim, W.-T., Su, L.-C., Chung, C.-J., Lin, C.-Y., Huo, C., Tseng, J.-C., Huang, S.-H., Lai, C.-J., Chen, B.-C., Wang, B.-J., Chan, T.-M., Lin, H.-P., Chang, W.-S. W., Chang, C.-R., & Chuu, C.-P. (2015). Caffeic Acid phenethyl ester is a potential therapeutic agent for oral cancer. International Journal of Molecular Sciences, 16(5), 10748–10766. https://doi.org/10.3390/ijms160510748
  • Lesmana, R., Tandean, S., Christoper, A., Suwantika, A. A., Wathoni, N., Abdulah, R., Fearnley, J., Bankova, V., & Zulhendri, F. (2024). Propolis as an autophagy modulator in relation to its roles in redox balance and inflammation regulation. Biomedicine & Pharmacotherapy, 175, 116745. https://doi.org/10.1016/j.biopha.2024.116745
  • Loira-Pastoriza, C., Todoroff, J., & Vanbever, R. (2014). Delivery strategies for sustained drug release in the lungs. Advanced Drug Delivery Reviews, 75, 81–91. https://doi.org/10.1016/j.addr.2014.05.017
  • Ma, X., Tian, Y., Yang, R., Wang, H., Allahou, L. W., Chang, J., Williams, G., Knowles, J. C., & Poma, A. (2024). Nanotechnology in healthcare, and its safety and environmental risks. Journal of Nanobiotechnology, 22(1), 715. https://doi.org/10.1186/s12951-024-02901-x
  • Masadah, R., Ikram, D., & Rauf, S. (2021). Effects of propolis and its bioactive components on breast cancer cell pathways and the molecular mechanisms involved. Breast Disease, 40(s1), S15–S25. https://doi.org/10.3233/BD-219003
  • Mendez-Pfeiffer, P., Juarez, J., Hernandez, J., Taboada, P., Virués, C., Valencia, D., & Velazquez, C. (2021). Nanocarriers as drug delivery systems for propolis: A therapeutic approach. Journal of Drug Delivery Science and Technology, 65, 102762. https://doi.org/10.1016/j.jddst.2021.102762
  • Meneghelli, C., Joaquim, L. S. D., Félix, G. L. Q., Somensi, A., Tomazzoli, M., da Silva, D. A., Berti, F. V., Veleirinho, M. B. R., Recouvreux, D. de O. S., de Mattos Zeri, A. C., Dias, P. F., & Maraschin, M. (2013). Southern Brazilian autumnal propolis shows anti-angiogenic activity: an in vitro and in vivo study. Microvascular Research, 88, 1–11. https://doi.org/10.1016/j.mvr.2013.03.003
  • Mirzaei, S., Gholami, M. H., Zabolian, A., Saleki, H., Farahani, M. V., Hamzehlou, S., Far, F. B., Sharifzadeh, S. O., Samarghandian, S., Khan, H., Aref, A. R., Ashrafizadeh, M., Zarrabi, A., & Sethi, G. (2021). Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacological Research, 171, 105759. https://doi.org/10.1016/j.phrs.2021.105759
  • Motomura, M., Kwon, K. M., Suh, S.-J., Lee, Y.-C., Kim, Y.-K., Lee, I.-S., … Kim, C.-H. (2008). Propolis induces cell cycle arrest and apoptosis in human leukemic U937 cells through Bcl-2/Bax regulation. Environmental Toxicology and Pharmacology, 26(1), 61–67. https://doi.org/10.1016/j.etap.2008.01.008
  • Moulahoum, H., Ghorbanizamani, F., Beduk, T., Beduk, D., Ozufuklar, O., Guler Celik, E., & Timur, S. (2023). Emerging trends in nanomaterial design for the development of point-of-care platforms and practical applications. Journal of Pharmaceutical and Biomedical Analysis, 235, 115623. https://doi.org/10.1016/j.jpba.2023.115623
  • Najahi-Missaoui, W., Arnold, R. D., & Cummings, B. S. (2020). Safe Nanoparticles: Are We There Yet? International Journal of Molecular Sciences, 22(1). https://doi.org/10.3390/ijms22010385
  • Natarajan, K., Singh, S., Burke, T. R., Grunberger, D., & Aggarwal, B. B. (1996). Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proceedings of the National Academy of Sciences, 93(17), 9090–9095. https://doi.org/10.1073/pnas.93.17.9090
  • Noore, S., Rastogi, N. K., O’Donnell, C., & Tiwari, B. (2021). Novel Bioactive Extraction and Nano-Encapsulation. Encyclopedia, 1(3), 632–664. https://doi.org/10.3390/encyclopedia1030052
  • Nori, M. P., Favaro-Trindade, C. S., Matias de Alencar, S., Thomazini, M., de Camargo Balieiro, J. C., & Contreras Castillo, C. J. (2011). Microencapsulation of propolis extract by complex coacervation. LWT - Food Science and Technology, 44(2), 429–435. https://doi.org/10.1016/j.lwt.2010.09.010
  • Ong, T. H., Chitra, E., Ramamurthy, S., Siddalingam, R. P., Yuen, K. H., Ambu, S. P., & Davamani, F. (2017). Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms. PLOS ONE, 12(3), e0174888. https://doi.org/10.1371/journal.pone.0174888
  • Oršolić, N., & Jazvinšćak Jembrek, M. (2022). Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer. International Journal of Molecular Sciences, 23(18). https://doi.org/10.3390/ijms231810479
  • Park, S.-I., Ohta, T., Kumazawa, S., Jun, M., & Ahn, M.-R. (2014). Korean propolis suppresses angiogenesis through inhibition of tube formation and endothelial cell proliferation. Natural product communications, 9(4), 555–560. http://www.ncbi.nlm.nih.gov/pubmed/24868883
  • Pasupuleti, V. R., Sammugam, L., Ramesh, N., & Gan, S. H. (2017). Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxidative Medicine and Cellular Longevity, 2017, 1259510. https://doi.org/10.1155/2017/1259510
  • Patel, S. (2016). Emerging Adjuvant Therapy for Cancer: Propolis and its Constituents. Journal of Dietary Supplements, 13(3), 245–268. https://doi.org/10.3109/19390211.2015.1008614
  • Perinelli, D. R., Palmieri, G. F., Cespi, M., & Bonacucina, G. (2020). Encapsulation of Flavours and Fragrances into Polymeric Capsules and Cyclodextrins Inclusion Complexes: An Update. Molecules, 25(24), 5878. https://doi.org/10.3390/molecules25245878
  • Rai, V. K., Mishra, N., Yadav, K. S., & Yadav, N. P. (2018). Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. Journal of Controlled Release, 270, 203–225. https://doi.org/10.1016/j.jconrel.2017.11.049
  • Revadihal, K., Dey, A., Amireddy, S., Roy, R., Datta, S., Purushottam Pai, V., Radhika, S., Akash, N., & Roshinee, R. (2025). A REVIEW ON TARGETED DRUG DELIVERY SYSTEMS IN ONCOLOGY. A REVIEW ON TARGETED DRUG DELIVERY SYSTEMS IN ONCOLOGY. World Journal of Pharmaceutical Science and Research, 4(1), 141. https://doi.org/10.5281/zenodo.14784473
  • Vagish Kumar, L. S. (2014). Propolis in dentistry and oral cancer management. North American Journal of Medical Sciences, 6(6), 250–259. https://doi.org/10.4103/1947-2714.134369
  • Sahar, N. (2020). Biochemical and Biological Evaluation of Propolis.
  • Sánchez-López, E., Guerra, M., Dias-Ferreira, J., Lopez-Machado, A., Ettcheto, M., Cano, A., Espina, M., Camins, A., Garcia, M. L., & Souto, E. B. (2019). Current Applications of Nanoemulsions in Cancer Therapeutics. Nanomaterials (Basel, Switzerland), 9(6). https://doi.org/10.3390/nano9060821
  • Sawicka, D., Car, H., Borawska, M. H., & Nikliński, J. (2012). The anticancer activity of propolis. Folia Histochemica et Cytobiologica, 50(1), 25–37. https://doi.org/10.2478/18693
  • Shaker, S. A., Alshufta, S. M., Gowayed, M. A., El-Salamouni, N. S., Bassam, S. M., Megahed, M. A., & El-Tahan, R. A. (2023). Propolis-loaded nanostructured lipid carriers halt breast cancer progression through miRNA-223 related pathways: an in-vitro/in-vivo experiment. Scientific Reports, 13(1), 15752. https://doi.org/10.1038/s41598-023-42709-7
  • Silva, C. C. F. da, Salatino, A., Motta, L. B. da, Negri, G., & Salatino, M. L. F. (2019). Chemical characterization, antioxidant and anti-HIV activities of a Brazilian propolis from Ceará state. Revista Brasileira de Farmacognosia, 29(3), 309–318. https://doi.org/10.1016/j.bjp.2019.04.001
  • Subaşı-Zarbaliyev, B., Kutlu, G., & Törnük, F. (2023). Polyvinyl alcohol nanoparticles loaded with propolis extract: Fabrication, characterization and antimicrobial activity. ADMET and DMPK. https://doi.org/10.5599/admet.1740
  • Sun, C., Wu, Z., Wang, Z., & Zhang, H. (2015). Effect of Ethanol/Water Solvents on Phenolic Profiles and Antioxidant Properties of Beijing Propolis Extracts. Evidence-Based Complementary and Alternative Medicine : ECAM, 2015, 595393. https://doi.org/10.1155/2015/595393
  • Sun, L., Liu, H., Ye, Y., Lei, Y., Islam, R., Tan, S., Tong, R., Miao, Y.-B., & Cai, L. (2023). Smart nanoparticles for cancer therapy. Signal Transduction and Targeted Therapy, 8(1), 418. https://doi.org/10.1038/s41392-023-01642-x
  • Touzani, S., Embaslat, W., Imtara, H., Kmail, A., Kadan, S., Zaid, H., ElArabi, I., Badiaa, L., & Saad, B. (2019). In Vitro Evaluation of the Potential Use of Propolis as a Multitarget Therapeutic Product: Physicochemical Properties, Chemical Composition, and Immunomodulatory, Antibacterial, and Anticancer Properties. BioMed Research International, 2019, 4836378. https://doi.org/10.1155/2019/4836378
  • Valença, I., Morais-Santos, F., Miranda-Gonçalves, V., Ferreira, A. M., Almeida-Aguiar, C., & Baltazar, F. (2013). Portuguese propolis disturbs glycolytic metabolism of human colorectal cancer in vitro. BMC Complementary and Alternative Medicine, 13, 184. https://doi.org/10.1186/1472-6882-13-184
  • Valivand, N., Aravand, S., Lotfi, H., Esfahani, A. J., Ahmadpour-Yazdi, H., & Gheibi, N. (2024). Propolis: a natural compound with potential as an adjuvant in cancer therapy - a review of signaling pathways. Molecular Biology Reports, 51(1), 931. https://doi.org/10.1007/s11033-024-09807-9 Watabe, M., Hishikawa, K., Takayanagi, A., Shimizu, N., & Nakaki, T. (2004). Caffeic Acid Phenethyl Ester Induces Apoptosis by Inhibition of NFκB and Activation of Fas in Human Breast Cancer MCF-7 Cells. Journal of Biological Chemistry, 279(7), 6017–6026. https://doi.org/10.1074/jbc.M306040200
  • Wieczorek, P. P., Hudz, N., Yezerska, O., Horčinová-Sedláčková, V., Shanaida, M., Korytniuk, O., & Jasicka-Misiak, I. (2022). Chemical Variability and PharmacologicalPotential of Propolis as a Source for the Development of New Pharmaceutical Products. Molecules, 27(5), 1600. https://doi.org/10.3390/molecules27051600
  • Xuan, H., Li, Z., Yan, H., Sang, Q., Wang, K., He, Q., Wang, Y., & Hu, F. (2014). Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF‐7 and MDA‐MB‐231 Cells. Evidence-Based Complementary and Alternative Medicine, 2014(1). https://doi.org/10.1155/2014/280120
There are 70 citations in total.

Details

Primary Language English
Subjects Nanobiotechnology
Journal Section Review
Authors

Busra Sinan 0009-0007-4084-8590

Adviye Gülçin Sağdıçoğlu Celep 0000-0002-4598-5814

Early Pub Date August 2, 2025
Publication Date October 12, 2025
Submission Date April 16, 2025
Acceptance Date July 26, 2025
Published in Issue Year 2026 Volume: 35 Issue: 1

Cite

APA Sinan, B., & Sağdıçoğlu Celep, A. G. (2025). Nanotechnology assisted natural antioxidants: Applications of Propolis loaded nanocarriers in cancer therapy. Biotech Studies, 35(1), 10-24. https://doi.org/10.38042/biotechstudies.1757098


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services