Research Article
BibTex RIS Cite

Effects of arsenate on electricity generation and microbial communities in single-chamber microbial fuel cells

Year 2026, Volume: 35 Issue: 1, 25 - 35
https://doi.org/10.38042/biotechstudies.1784164

Abstract

In this study, the removal of arsenate, an important environmental pollutant found in wastewater, and simultaneous electricity generation were investigated using microbial fuel cells. Single-chamber air cathode microbial fuel cells were used to examine the effects of synthetic wastewater prepared using sodium arsenate at a concentration range of 0-300 mg/L on electricity production. Arsenate removal percentages were investigated, and changes in microbial ecology were also examined. According to the results, 0.179 V electricity was produced in microbial fuel cells up to 200 mg/L sodium arsenate concentration. However, when the concentration was increased to 300 mg/L, the voltage production decreased significantly (p = 0.005). A significant difference (p < 0.0001) between lower concentrations (0–15 mg/L) and 300 mg/L arsenate was confirmed by one-way ANOVA analysis, suggesting a strong inhibitory response. 11.5% of sodium arsenate was removed from synthetic wastewater during batch operations. The microbial ecology results indicated that Geobacter, Azospirillum, and Xanthobacter genera significantly increased following arsenate treatment. In conclusion, arsenate-contaminated wastewater can be biologically treated with single-chamber microbial fuel cells, and electricity can be produced simultaneously.

References

  • Abourached, C., Catal, T., & Liu, H. (2014). Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Research, 51, 228–233. https://doi.org/10.1016/j.watres.2013.10.062 Akagunduz, D., Cebecioglu, R., Ozen, F., Ozdemir, M., Bermek, H., Tarhan, N., Arslan, A., & Catal, T. (2022). Effects of Psychoactive Pharmaceuticals in Wastewater on Electricity Generation in Microbial Fuel Cells. CLEAN–Soil, Air, Water, 50(12), 2100027. https://doi.org/10.1002/clen.202100027 Akagunduz, D., Aydin, O., Tuncay, E., & Bermek, H. (2025). Microbial fuel cells: A potent and sustainable solution for heavy metal removal. EUCHEMBIOJ Reviews, (1), 45-69. https://doi.org/10.62063/rev-6
  • Almatouq, A., Webster, G., & Babatunde, A. (2022). Silver removal and microbial community structure in microbial fuel cells. Journal of Chemical Technology & Biotechnology, 97(12), 3441–3452. https://doi.org/10.1002/jctb.7204
  • Altowayti, W. a. H., Othman, N., Shahir, S., Alshalif, A. F., Al-Gheethi, A. A., Al-Towayti, F. a. H., Saleh, Z. M., & Haris, S. A. (2022). Removal of arsenic from wastewater by using different technologies and adsorbents: a review. International Journal of Environmental Science and Technology, 19(9), 9243–9266. https://doi.org/10.1007/s13762-021-03660-0
  • Andres, J., & Bertin, P. N. (2016). The microbial genomics of arsenic. FEMS Microbiology Reviews, 40(2), 299–322. https://doi.org/10.1093/femsre/fuv050
  • APHA. (1992). Standard methods for the examination of water and wastewater (18th ed.). American Public Health Association (APHA), American Water Works Association (AWWA), and Water Pollution Control Federation (WPCF).
  • Badalamenti, J. P., Krajmalnik-Brown, R., & Torres, C. I. (2013). Generation of high current densities by pure cultures of anode-respiring Geoalkalibacter spp. under alkaline and saline conditions in microbial electrochemical cells. mBio, 4(3), e00144-13. https://doi.org/10.1128/mBio.00144-13
  • Bjørklund, G., Tippairote, T., Rahaman, M. S., & Aaseth, J. (2020). Developmental toxicity of arsenic: A drift from the classical dose-response relationship. Archives of Toxicology, 94(1), 67–75. https://doi.org/10.1007/s00204-019-02628-x
  • Catal, T., & Liu, H. (2025). Microbial fuel cell technology: Novelties for a clean future. EUCHEMBIOJ Reviews, (1), 1–20. https://doi.org/10.62063/rev-1
  • Catal, T., Bermek, H., & Liu, H. (2009). Removal of selenite from wastewater using microbial fuel cells. Biotechnology Letters, 31(8), 1211–1216. https://doi.org/10.1007/s10529-009-9990-8
  • Catal, T., Fan, Y., Li, K., Bermek, H., & Liu, H. (2011). Utilization of mixed monosaccharides for power generation in microbial fuel cells. Journal of Chemical Technology & Biotechnology, 86(4), 570–574. https://doi.org/10.1002/jctb.2554
  • Catal, T., Yavaser, S., Enisoglu-Atalay, V., Bermek, H., & Ozilhan, S. (2018). Monitoring of neomycin sulfate antibiotic in microbial fuel cells. Bioresource Technology, 268, 116–120. https://doi.org/10.1016/j.biortech.2018.07.122
  • Catal, T., Liu, H., Kilinc, B., & Yilancioglu, K. (2024). Extracellular polymeric substances in electroactive biofilms play a crucial role in improving the efficiency of microbial fuel and electrolysis cells. Letters in Applied Microbiology, 77(3), ovae017. https://doi.org/10.1093/lambio/ovae017
  • Choi, C., & Hu, N. (2013). The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell. Bioresource Technology, 133, 589–598. https://doi.org/10.1016/j.biortech.2013.01.143
  • Chong, H., & Li, Q. (2017). Microbial production of rhamnolipids: Opportunities, challenges and strategies. Microbial Cell Factories, 16, 137. https://doi.org/10.1186/s12934-017-0753-2
  • Dang, Y., Walker, D. J., Vautour, K. E., Dixon, S., & Holmes, D. E. (2017). Arsenic detoxification by Geobacter species. Applied and Environmental Microbiology, 83(4), e02689-16. https://doi.org/10.1128/AEM.02689-16
  • Do, M. H., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Pandey, A., Sharma, P., Varjani, S., Nguyen, T. A. H., & Hoang, N. B. (2022). A dual chamber microbial fuel cell based biosensor for monitoring copper and arsenic in municipal wastewater. The Science of the total environment, 811, 152261. https://doi.org/10.1016/j.scitotenv.2021.152261
  • Du, Z., Li, H., & Gu, T. (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25(5), 464–482. https://doi.org/10.1016/j.biotechadv.2007.05.004
  • Enebe, M. C., & Babalola, O. O. (2018). The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: A survival strategy. Applied Microbiology and Biotechnology, 102, 7821–7835. https://doi.org/10.1007/s00253-018-9214-z
  • Engel, A. S., Johnson, L. R., & Porter, M. L. (2013). Arsenite oxidase gene diversity among Chloroflexi and Proteobacteria from El Tatio Geyser Field, Chile. FEMS Microbiology Ecology, 83(3), 745–756. https://doi.org/10.1111/1574-6941.12030
  • Fan, Y., Janicek, A., & Liu, H. (2024). Stable and high voltage and power output of CEA-MFCs internally connected in series (iCiS-MFC). The European Chemistry and Biotechnology Journal, 1, 47–57. https://doi.org/10.62063/ecb-17
  • Fang, C., & Achal, V. (2019). The Potential of Microbial Fuel Cells for Remediation of Heavy Metals from Soil and Water—Review of Application. Microorganisms, 7(12), 697. https://doi.org/10.3390/microorganisms7120697
  • Gebel, T. (1997). Arsenic and antimony: Comparative approach on mechanistic toxicology. Chemico-Biological Interactions, 107(1-2), 131–144. https://doi.org/10.1016/s0009-2797(97)00087-2
  • Guo, Z., Sun, Y., Pan, S., & Chiang, P. (2019). Integration of green energy and Advanced Energy-Efficient technologies for municipal wastewater treatment plants. International Journal of Environmental Research and Public Health, 16(7), 1282. https://doi.org/10.3390/ijerph16071282
  • Guo, J., Cheng, J., Wang, J., & Hu, S. (2021). Simultaneous Removal of Trivalent Arsenic and Nitrate Using Microbial Fuel Cells. Processes, 9(4), 673. https://doi.org/10.3390/pr9040673
  • Huang, L., Chen, J., Quan, X., & Yang, F. (2010). Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell. Bioprocess and Biosystems Engineering, 33(8), 937–945. https://doi.org/10.1007/s00449-010-0417-7
  • Kaur, S., Kamli, M. R., & Ali, A. (2011). Role of arsenic and its resistance in nature. Canadian Journal of Microbiology, 57(10), 769–774. https://doi.org/10.1139/w11-062
  • Kilinc, B., Akagunduz, D., Ozdemir, M., Kul, A., & Catal, T. (2023). Hydrogen production using cocaine metabolite in microbial electrolysis cells. 3 Biotech, 13(11), Article 328. https://doi.org/10.1007/s13205-023-03805-7
  • Kilinc, B., & Catal, T. (2023). A Novel Microbial Fuel Cell for the Sensing of Sodium Acetate in Soil. Polish Journal of Environmental Studies, 32(5), 4931–4936. https://doi.org/10.15244/pjoes/168804
  • Kilinc, B., Kul, A., Zirhli, O., Kurt, H., Sever Kaya, D., Cakmak Cebeci, F., & Catal, T. (2024). A chemical and biological characterization of marine mucilage that generates electricity in microbial fuel cells. Separation Science and Technology, 60(1), 157–171. https://doi.org/10.1080/01496395.2024.2420691
  • Kim, K. W., Chanpiwat, P., Hanh, H. T., Phan, K., & Sthiannopkao, S. (2011). Arsenic geochemistry of groundwater in Southeast Asia. Frontiers in Medicine, 5(4), 420–433. https://doi.org/10.1007/s11684-011-0158-2
  • Kumar, S. S., Kumar, V., Gude, V. G., Malyan, S. K., & Pugazhendhi, A. (2020). Alkalinity and salinity favor bioelectricity generation potential of Clostridium, Tetrathiobacter and Desulfovibrio consortium in Microbial Fuel Cells (MFC) treating sulfate-laden wastewater. Bioresource Technology, 306, 123110. https://doi.org/10.1016/j.biortech.2020.123110
  • Landi, L., Renella, G., Moreno, J. L., Falchini, L., & Nannipieri, P. (2000). Influence of cadmium on the metabolic quotient, L-: D-glutamic acid respiration ratio and enzyme activity: microbial biomass ratio under laboratory conditions. Biology and Fertility of Soils, 32, 8–16. https://doi.org/10.1007/s003740000205
  • Lovley, D. R., & Phillips, E. (1988). Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology, 54(6), 1472–1480. https://doi.org/10.1128/aem.54.6.1472-1480.1988
  • Madhu Agarwal, R., & Singh, K. (2017). Heavy metal removal from wastewater using various adsorbents: A review. Journal of Water Reuse and Desalination, 7(3), 387–419. https://doi.org/10.2166/wrd.2016.104
  • Malekmohammadi, S., & Ahmad Mirbagheri, S. (2021). A review of the operating parameters on the microbial fuel cell for wastewater treatment and electricity generation. Water Science and Technology, 84(6), 1309–1323. https://doi.org/10.2166/wst.2021.333
  • Miller, L. G., Blum, J. S., & Oremland, R. S. (2006). Microbial fuel cell as life detector: Arsenic cycling in hypersaline environments [Abstract #B13C-1105]. Fall Meeting 2006, American Geophysical Union.
  • Muller, D., Simeonova, D. D., Riegel, P., Mangenot, S., Koechler, S., Lièvremont, D., Bertin, P. N., & Lett, M. C. (2006). Herminiimonas arsenicoxydans sp. nov., a metalloresistant bacterium. International Journal of Systematic and Evolutionary Microbiology, 56(Pt 8), 1765–1769. https://doi.org/10.1099/ijs.0.64308-0
  • Norberg, A., & Molin, N. (1983). Toxicity of cadmium, cobalt, uranium and zinc to Zoogloea ramigera. Water Research, 17(10), 1333–1336. https://doi.org/10.1016/0043-1354(83)90260-9
  • Obileke, K., Onyeaka, H., Meyer, E. L., & Nwokolo, N. (2021). Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochemistry Communications, 125, 107003. https://doi.org/10.1016/j.elecom.2021.107003
  • Ozdemir, M., Enisoglu-Atalay, V., Bermek, H., Ozilhan, S., Tarhan, N., & Catal, T. (2019). Removal of a cannabis metabolite from human urine in microbial fuel cells generating electricity. Bioresource Technology Reports, 5, 121–126. https://doi.org/10.1016/j.biteb.2019.01.003
  • Ozer, T. (2025). Electrochemical activation and characterization of carbon cloth. The European Chemistry and Biotechnology Journal, (3), 11–20. https://doi.org/10.62063/ecb-35
  • Park, D. H., & Zeikus, J. G. (2000). Electricity generation in microbial fuel cells using neutral red as an electronophore. Applied and Environmental Microbiology, 66(4), 1292–1297. https://doi.org/10.1128/AEM.66.4.1292-1297.2000 Qiu, R., Zhang, B., Li, J., Lv, Q., Wang, S., & Gu, Q. (2017). Enhanced vanadium (V) reduction and bioelectricity generation in microbial fuel cells with biocathode. Journal of Power Sources, 359, 379–383. https://doi.org/10.1016/j.jpowsour.2017.05.099
  • Rikame, S. S., Mungray, A. A., & Mungray, A. K. (2020). Electrochemical recovery of metal copper in microbial fuel cell using graphene oxide/polypyrrole cathode catalyst. International Journal of Energy Research, 45(5), 6863–6875. https://doi.org/10.1002/er.6277
  • Sandhi, A., Yu, C., Rahman, M. M., & Amin, M. N. (2022). Arsenic in the water and agricultural crop production system: Bangladesh perspectives. Environmental Science and Pollution Research International, 29(34), 51354–51366. https://doi.org/10.1007/s11356-022-20880-0
  • Sonmez, E., Avci, B., Mohamed, N., & Bermek, H. (2024). Investigation of performance losses in microbial fuel cells with low platinum loadings on air-cathodes. The European Chemistry and Biotechnology Journal, 1, 11–26. https://doi.org/10.62063/ecb-14
  • Sukkasem, C. (2024). Exploring biofilm-forming bacteria for integration into BioCircuit wastewater treatment. The European Chemistry and Biotechnology Journal, (2), 39–52. https://doi.org/10.62063/ecb-28
  • Sumisha, A., & Haribabu, K. (2020). Energy generation and iron removal in batch and continuous Single‐Chamber microbial fuel cells. Chemical Engineering & Technology, 44(2), 258–264. https://doi.org/10.1002/ceat.202000144
  • Tchounwou, P. B., Centeno, J. A., & Patlolla, A. K. (2004). Arsenic toxicity, mutagenesis, and carcinogenesis—A health risk assessment and management approach. Molecular and Cellular Biochemistry, 255(1-2), 47–55. https://doi.org/10.1023/b:mcbi.0000007260.32981.b9
  • Tkach, O., Sangeetha, T., Maria, S., & Wang, A. (2016). Performance of low temperature Microbial Fuel Cells (MFCs) catalyzed by mixed bacterial consortia. Journal of Environmental Sciences, 52, 284–292. https://doi.org/10.1016/j.jes.2016.11.006
  • Tripathi, A., & Ranjan, M. R. (2015). Heavy Metal Removal from Wastewater Using Low-Cost Adsorbents. Journal of Bioremediation & Biodegradation, 6(6), 315. https://doi.org/10.4172/2155-6199.1000315
  • Ucar, D., Zhang, Y., & Angelidaki, I. (2017). An overview of electron acceptors in microbial fuel cells. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00643
  • Wang, J., Ren, K., Zhu, Y., Huang, J., & Liu, S. (2022). A Review of Recent Advances in Microbial Fuel Cells: Preparation, Operation, and Application. Biotech (Basel, Switzerland), 11(4), 44. https://doi.org/10.3390/biotech11040044
  • Wu, W., Lesnik, K. L., Xu, S., Wang, L., & Liu, H. (2014). Impact of tobramycin on the performance of microbial fuel cell. Microbial Cell Factories, 13(1), Article 91. https://doi.org/10.1186/s12934-014-0091-6
  • Xu, X. L. (1991). Effects of As (III) and As (V) on enzymes from activated sluge. Acta Scientiae Circumstantiae, 11, 445–450.
  • Jadhav, G. S., & Ghangrekar, M. M. (2009). Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresource technology, 100(2), 717–723. https://doi.org/10.1016/j.biortech.2008.07.041
  • Yang, S., Jia, B., & Liu, H. (2009). Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell. Bioresource Technology, 100(3), 1197–1202. https://doi.org/10.1016/j.biortech.2008.08.005
  • Zhang, J., Cao, X., Wang, H., Long, X., & Li, X. (2020). Simultaneous enhancement of heavy metal removal and electricity generation in soil microbial fuel cell. Ecotoxicology 1 and Environmental Safety, 192, 110314. https://doi.org/10.1016/j.ecoenv.2020.110314
  • Zhang, X., Liu, Y. & Li, C. Influence of Cr (VI) concentration on Cr (VI) reduction and electricity production in microbial fuel cell. Environ Sci Pollut Res 28, 54170–54176 (2021). https://doi.org/10.1007/s11356-021-15889-w
  • Zhang, J., Ren, H., Jayasuriya, S., Tian, X., & Chae, J. (2022). The Biological Memory Effect in Microbial Fuel Cell Biosensors. IEEE Sensors Journal, 22, 17698–17705. https://doi.org/10.1109/JSEN.2022.3194557
  • Zhu, J., Zhang, T., Zhu, N., Feng, C., Zhou, S., & Dahlgren, R. A. (2019). Bioelectricity generation by wetland plant-sediment microbial fuel cells (P-SMFC) and effects on the transformation and mobility of arsenic and heavy metals in sediment. Environmental Geochemistry and Health, 41(5), 2157–2168. https://doi.org/10.1007/s10653-019-00266-x
There are 60 citations in total.

Details

Primary Language English
Subjects Industrial Microbiology, Environmentally Sustainable Engineering
Journal Section Research Articles
Authors

Aksana Kavaleuskaya 0009-0002-2310-5545

Burak Kilinc This is me 0009-0005-0533-8064

Dilek Sever Kaya 0000-0001-9155-935X

Halil Kurt This is me 0000-0002-7392-527X

Tunç Çatal 0000-0003-2990-8680

Early Pub Date September 15, 2025
Publication Date October 6, 2025
Submission Date April 18, 2025
Acceptance Date August 4, 2025
Published in Issue Year 2026 Volume: 35 Issue: 1

Cite

APA Kavaleuskaya, A., Kilinc, B., Sever Kaya, D., … Kurt, H. (2025). Effects of arsenate on electricity generation and microbial communities in single-chamber microbial fuel cells. Biotech Studies, 35(1), 25-35. https://doi.org/10.38042/biotechstudies.1784164


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services