Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, , 959 - 968, 28.12.2023
https://doi.org/10.17798/bitlisfen.1295905

Öz

Kaynakça

  • [1] T. Langdon, ‘The processing of ultrafine-grained materials through the application of severe plastic deformation’, Journal of Materials Science, vol. 42, pp. 3388–3397, May 2007, doi: 10.1007/s10853-006-1475-8.
  • [2] G. Faraji, H. S. Kim, and H. T. Kashi, ‘Severe Plastic Deformation Methods, Processing and Properties’, in Severe Plastic Deformation, Elsevier, 2018, pp. 1–315. doi: 10.1016/B978-0-12-813518-1.00020-5.
  • [3] R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, ‘Bulk nanostructured materials from severe plastic deformation’, Progress in Materials Science, vol. 45, no. 2, pp. 103–189, Mar. 2000, doi: 10.1016/S0079-6425(99)00007-9.
  • [4] R. Z. Valiev and T. G. Langdon, ‘Principles of equal-channel angular pressing as a processing tool for grain refinement’, Progress in Materials Science, vol. 51, no. 7, pp. 881–981, Sep. 2006, doi: 10.1016/j.pmatsci.2006.02.003.
  • [5] H. Gleiter, ‘Nanostructured materials: basic concepts and microstructure’, Acta Materialia, vol. 48, no. 1, pp. 1–29, Jan. 2000, doi: 10.1016/S1359-6454(99)00285-2.
  • [6] T. Lowe and R. Valiev, ‘Investigations and applications of severe plastic deformation’. Accessed: May 31, 2023. [Online]. Available: https://www.semanticscholar.org/paper/Investigations-and-applications-of-severe-plastic-Lowe-Valiev/5fb98bd57db1c90daeb3a4a24191e189901fe4e9
  • [7] C. Haase, O. Kremer, W. Hu, T. Ingendahl, R. Lapovok, and D. A. Molodov, ‘Equal-channel angular pressing and annealing of a twinning-induced plasticity steel: Microstructure, texture, and mechanical properties’, Acta Materialia, vol. 107, pp. 239–253, Apr. 2016, doi: 10.1016/j.actamat.2016.01.056.
  • [8] H. Shahmir, T. Mousavi, J. He, Z. Lu, M. Kawasaki, and T. G. Langdon, ‘Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing’, Materials Science and Engineering: A, vol. 705, pp. 411–419, Sep. 2017, doi: 10.1016/j.msea.2017.08.083.
  • [9] A. Esmaeili, M. H. Shaeri, M. T. Noghani, and A. Razaghian, ‘Fatigue behavior of AA7075 aluminium alloy severely deformed by equal channel angular pressing’, Journal of Alloys and Compounds, vol. 757, pp. 324–332, Aug. 2018, doi: 10.1016/j.jallcom.2018.05.085.
  • [10] S. Öğüt, H. Kaya, A. Kentli, K. Özbeyaz, M. Şahbaz, and M. Uçar, ‘Investigation of Strain Inhomogeneity in Hexa-ECAP Processed AA7075’.
  • [11] R. Z. Valiev, A. V. Korznikov, and R. R. Mulyukov, ‘Structure and properties of ultrafine-grained materials produced by severe plastic deformation’, Materials Science and Engineering: A, vol. 168, no. 2, pp. 141–148, Aug. 1993, doi: 10.1016/0921-5093(93)90717-S.
  • [12] Y. Estrin and A. Vinogradov, ‘Extreme grain refinement by severe plastic deformation: A wealth of challenging science’, Acta Materialia, vol. 61, no. 3, p. 782, 2013.
  • [13] R. Z. Valiev, I. V. Alexandrov, and R. K. Islamgaliev, ‘Processing and Properties of Nanostructured Materials Prepared by Severe Plastic Deformation’, in Nanostructured Materials: Science & Technology, G.-M. Chow and N. I. Noskova, Eds., in NATO ASI Series. , Dordrecht: Springer Netherlands, 1998, pp. 121–142. doi: 10.1007/978-94-011-5002-6_7.
  • [14] V. M. Segal, ‘Materials processing by simple shear’, Materials Science and Engineering: A, vol. 197, no. 2, pp. 157–164, Jul. 1995, doi: 10.1016/0921-5093(95)09705-8.
  • [15] A. P. Zhilyaev and T. G. Langdon, ‘Using high-pressure torsion for metal processing: Fundamentals and applications’, Progress in Materials Science, vol. 53, no. 6, pp. 893–979, Aug. 2008, doi: 10.1016/j.pmatsci.2008.03.002.
  • [16] Y. Ito, K. Edalati, and Z. Horita, ‘High-pressure torsion of aluminum with ultrahigh purity (99.9999%) and occurrence of inverse Hall-Petch relationship’, Materials Science and Engineering A, vol. 679, pp. 428–434, Jan. 2017, doi: 10.1016/j.msea.2016.10.066.
  • [17] A. Fattah-alhosseini, A. R. Ansari, Y. Mazaheri, and M. K. Keshavarz, ‘Effect of immersion time on the passive and electrochemical response of annealed and nano-grained commercial pure titanium in Ringer's physiological solution at 37 °C’, Materials Science and Engineering: C, vol. 71, p. 771, 2017.
  • [18] M. Shahbaz, N. Pardis, R. Ebrahimi, and B. Talebanpour, ‘A novel single pass severe plastic deformation technique: Vortex extrusion’, Materials Science and Engineering: A, vol. 530, pp. 469–472, Dec. 2011, doi: 10.1016/j.msea.2011.09.114.
  • [19] R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zechetbauer, and Y. T. Zhu, ‘Producing bulk ultrafine-grained materials by severe plastic deformation’, JOM, vol. 58, no. 4, pp. 33–39, Apr. 2006, doi: 10.1007/s11837-006-0213-7.
  • [20] M. Richert, R. Hubicki, and P. Łebkowski, ‘Perspectives of Microstructure Refinement of Aluminum and Its Alloys by the Reciprocating Extrusion (Cyclic Extrusion Compression—CEC)’, Materials, vol. 15, p. 4006, Jun. 2022, doi: 10.3390/ma15114006.
  • [21] G. A. Manjunath, S. Shivakumar, S. P. Avadhani, and P. C. Sharath, ‘Investigation of mechanical properties and microstructural behavior of 7050 aluminium alloy by multi directional forging technique’, Materials Today: Proceedings, vol. 27, pp. 1147–1151, Jan. 2020, doi: 10.1016/j.matpr.2020.02.001.
  • [22] R. Kocich, G. Miroslav, M. Kursa, I. Szurman, and A. Macháčková, ‘Twist channel angular pressing (TCAP) as a method for increasing the efficiency of SPD’, Materials Science and Engineering: A, vol. 527, pp. 6386–6392, Sep. 2010, doi: 10.1016/j.msea.2010.06.057.
  • [23] S. Sepahi-Boroujeni and F. Fereshteh-Saniee, ‘The influences of the expansion equal channel angular extrusion operation on the strength and ductility of AZ80 magnesium alloy’, Materials Science and Engineering: A, vol. 636, pp. 249–253, Jun. 2015, doi: 10.1016/j.msea.2015.03.073.
  • [24] S. Öğüt, H. Kaya, A. Kentli, and M. Uçar, ‘Applying hybrid equal channel angular pressing (HECAP) to pure copper using optimized Exp.-ECAP die’, Int J Adv Manuf Technol, vol. 116, no. 11, pp. 3859–3876, Oct. 2021, doi: 10.1007/s00170-021-07717-9.
  • [25] K. Özbeyaz, H. Kaya, and A. Kentli, ‘Novel SPD Method: Twisted Variable Channel Angular Extrusion’, Met. Mater. Int., vol. 28, no. 5, pp. 1290-1305, May 2022, doi:10.1007/s12540-021-01086-4.
  • [26] M. Şahbaz, H. Kaya, and A. Kentli, ‘A new severe plastic deformation method: thin-walled open channel angular pressing (TWO-CAP)’, Int J Adv Manuf Technol, vol. 106, no. 3, pp. 1487–1496, Jan. 2020, doi: 10.1007/s00170-019-04748-1.
  • [27] G. Faraji, A. Babaei, M. M. Mashhadi, and K. Abrinia, ‘Parallel tubular channel angular pressing (PTCAP) as a new severe plastic deformation method for cylindrical tubes’, Materials Letters, vol. 77, pp. 82–85, Jun. 2012, doi: 10.1016/j.matlet.2012.03.007.
  • [28] N. Thangapandian, S. Balasivanandha Prabu, and K. A. Padmanabhan, ‘Effect of Temperature on Grain Size in AA6063 Aluminum Alloy Subjected to Repetitive Corrugation and Straightening’, Acta Metall. Sin. (Engl. Lett.), vol. 32, no. 7, pp. 835–844, Jul. 2019, doi: 10.1007/s40195-018-0866-6.
  • [29] H. Kaya, K. Özbeyaz, A. Kentli, M. Şahbaz, and S. Öğüt, Mechanical Properties and Electrical Conductivity Performance of ECAP Processed Al2024 Alloy. 2019.
  • [30] S. Öğüt, H. Kaya, and A. Kentli, ‘Comparison of the Effect of Equal Channel Angular Pressing, Expansion Equal Channel Angular Pressing, and Hybrid Equal Channel Angular Pressing on Mechanical Properties of AZ31 Mg Alloy’, J. of Materi Eng and Perform, vol. 31, no. 4, pp. 3341–3353, Apr. 2022, doi: 10.1007/s11665-021-06430-8.
  • [31] X. Zhao, X. Yang, X. Liu, C. T. Wang, Y. Huang, and T. G. Langdon, ‘Processing of commercial purity titanium by ECAP using a 90 degrees die at room temperature’, Materials Science and Engineering: A, vol. 607, pp. 482–489, Jun. 2014, doi: 10.1016/j.msea.2014.04.014.
  • [32] J. R. Davis, Aluminum and Aluminum Alloys. ASM International, 1993.
  • [33] A. Mashhuriazar, A. Ebrahimzadeh Pilehrood, H. Moghanni, A. H. Baghdadi, and H. Omidvar, ‘Finite Element Analysis and Optimization of Equal-Channel Angular Rolling Process by Using Taguchi Methodology’, J. of Materi Eng and Perform, vol. 32, no. 1, pp. 176–184, Jan. 2023, doi: 10.1007/s11665-022-07100-z.
  • [34] C. Obara, F. M. Mwema, J. N. Keraita, H. Shagwira, and J. O. Obiko, ‘A multi-response optimization of the multi-directional forging process for aluminium 7075 alloy using grey-based taguchi method’, SN Appl. Sci., vol. 3, no. 6, p. 596, May 2021, doi: 10.1007/s42452-021-04527-2.
  • [35] C. Hamzaçebı and F. Kutay, ‘Taguchi̇ Metodu: Bi̇r Uygulama: Taguchi Method: An Application.’, Teknoloji, vol. 6, no. 3/4, pp. 7–17, Jul. 2003.
  • [36] Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon, ‘An investigation of microstructural evolution during equal-channel angular pressing’, Acta Materialia, vol. 45, pp. 4733–4741, Jan. 1997, doi: 10.1016/S1359-6454(97)00100-6.
  • [37] D. M. Fouad, A. Moataz, W. H. El-Garaihy, and H. G. Salem, ‘Numerical and experimental analysis of multi-channel spiral twist extrusion processing of AA5083’, Materials Science and Engineering: A, vol. 764, p. 138216, Sep. 2019, doi: 10.1016/j.msea.2019.138216.
  • [38] S. A. A. Akbari Mousavi and A. R. Shahab, ‘Influence of Strain Accumulation on Microstructure of Aluminum 1100 in The Twist Extrusion’, Int. J. Mod. Phys. B, vol. 22, no. 18n19, pp. 2858–2865, Jul. 2008, doi: 10.1142/S0217979208047687.
  • [39] R. Kulagin, M. I. Latypov, H. S. Kim, V. Varyukhin, and Y. Beygelzimer, ‘Cross Flow During Twist Extrusion: Theory, Experiment, and Application’, Metall Mater Trans A, vol. 44, no. 7, pp. 3211–3220, Jul. 2013, doi: 10.1007/s11661-013-1661-7.
  • [40] ‘Twist Extrusion as a Potent Tool for Obtaining Advanced Engineering Materials: A Review  - Beygelzimer - 2017 - Advanced Engineering Materials - Wiley Online Library’. Accessed: May 31, 2023. [Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/adem.201600873

Design, Finite Element Analysis and Optimization of Helical Angular Pressing (HAP) Method as a Novel SPD Technique

Yıl 2023, , 959 - 968, 28.12.2023
https://doi.org/10.17798/bitlisfen.1295905

Öz

Severe Plastic Deformation (SPD) processes improve the mechanical properties of materials by obtaining Ultra Fine Grained (UFG) materials, orienting the grains and reforming the grains. Helical Angular Pressing (HAP) is a newly proposed Severe Plastic Deformation (SPD) method. In order to improve the efficiency of the HAP method, its die geometry should be optimized first. In this context, four parameters (helical diameter, helical pitch, helical height and channel radius) were determined for the die channel geometry, each with four levels according to the literature. Then, thanks to Taguchi L16 combinations, 16 Finite Element Analyses (FEA) were carried out using Deform 3D software instead of 256 simulations, and effective strain values and maximum pressing load values were obtained. Later on, using the SPSS 16 software, Taguchi optimization was carried out to obtain the optimum HAP die channel geometries by minimizing the press load and maximizing the effective strain values. Next, the Finite Element Analysis (FEA) was repeated with these determined optimum die channel parameters. Finally, the efficiency of this novel HAP method was compared with conventional Equal Channel Angular Pressing (ECAP) and Twist Extrusion (TE) methods. As a result, HAP method provides effective strain values equivalent to 10 number of passes after processing with ECAP. And it is approximately 4 times higher than that achieved by TE processing. As a result of the Taguchi optimization, it is concluded that the values in the combination of diameter (d)=60 mm, height (h)=50 mm, radius (r)=4 and pitch (p)=1.25 are the optimum die geometry. In conclusion, these results indicate that the proposed novel HAP method is an efficient and applicable SPD technique.

Kaynakça

  • [1] T. Langdon, ‘The processing of ultrafine-grained materials through the application of severe plastic deformation’, Journal of Materials Science, vol. 42, pp. 3388–3397, May 2007, doi: 10.1007/s10853-006-1475-8.
  • [2] G. Faraji, H. S. Kim, and H. T. Kashi, ‘Severe Plastic Deformation Methods, Processing and Properties’, in Severe Plastic Deformation, Elsevier, 2018, pp. 1–315. doi: 10.1016/B978-0-12-813518-1.00020-5.
  • [3] R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, ‘Bulk nanostructured materials from severe plastic deformation’, Progress in Materials Science, vol. 45, no. 2, pp. 103–189, Mar. 2000, doi: 10.1016/S0079-6425(99)00007-9.
  • [4] R. Z. Valiev and T. G. Langdon, ‘Principles of equal-channel angular pressing as a processing tool for grain refinement’, Progress in Materials Science, vol. 51, no. 7, pp. 881–981, Sep. 2006, doi: 10.1016/j.pmatsci.2006.02.003.
  • [5] H. Gleiter, ‘Nanostructured materials: basic concepts and microstructure’, Acta Materialia, vol. 48, no. 1, pp. 1–29, Jan. 2000, doi: 10.1016/S1359-6454(99)00285-2.
  • [6] T. Lowe and R. Valiev, ‘Investigations and applications of severe plastic deformation’. Accessed: May 31, 2023. [Online]. Available: https://www.semanticscholar.org/paper/Investigations-and-applications-of-severe-plastic-Lowe-Valiev/5fb98bd57db1c90daeb3a4a24191e189901fe4e9
  • [7] C. Haase, O. Kremer, W. Hu, T. Ingendahl, R. Lapovok, and D. A. Molodov, ‘Equal-channel angular pressing and annealing of a twinning-induced plasticity steel: Microstructure, texture, and mechanical properties’, Acta Materialia, vol. 107, pp. 239–253, Apr. 2016, doi: 10.1016/j.actamat.2016.01.056.
  • [8] H. Shahmir, T. Mousavi, J. He, Z. Lu, M. Kawasaki, and T. G. Langdon, ‘Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing’, Materials Science and Engineering: A, vol. 705, pp. 411–419, Sep. 2017, doi: 10.1016/j.msea.2017.08.083.
  • [9] A. Esmaeili, M. H. Shaeri, M. T. Noghani, and A. Razaghian, ‘Fatigue behavior of AA7075 aluminium alloy severely deformed by equal channel angular pressing’, Journal of Alloys and Compounds, vol. 757, pp. 324–332, Aug. 2018, doi: 10.1016/j.jallcom.2018.05.085.
  • [10] S. Öğüt, H. Kaya, A. Kentli, K. Özbeyaz, M. Şahbaz, and M. Uçar, ‘Investigation of Strain Inhomogeneity in Hexa-ECAP Processed AA7075’.
  • [11] R. Z. Valiev, A. V. Korznikov, and R. R. Mulyukov, ‘Structure and properties of ultrafine-grained materials produced by severe plastic deformation’, Materials Science and Engineering: A, vol. 168, no. 2, pp. 141–148, Aug. 1993, doi: 10.1016/0921-5093(93)90717-S.
  • [12] Y. Estrin and A. Vinogradov, ‘Extreme grain refinement by severe plastic deformation: A wealth of challenging science’, Acta Materialia, vol. 61, no. 3, p. 782, 2013.
  • [13] R. Z. Valiev, I. V. Alexandrov, and R. K. Islamgaliev, ‘Processing and Properties of Nanostructured Materials Prepared by Severe Plastic Deformation’, in Nanostructured Materials: Science & Technology, G.-M. Chow and N. I. Noskova, Eds., in NATO ASI Series. , Dordrecht: Springer Netherlands, 1998, pp. 121–142. doi: 10.1007/978-94-011-5002-6_7.
  • [14] V. M. Segal, ‘Materials processing by simple shear’, Materials Science and Engineering: A, vol. 197, no. 2, pp. 157–164, Jul. 1995, doi: 10.1016/0921-5093(95)09705-8.
  • [15] A. P. Zhilyaev and T. G. Langdon, ‘Using high-pressure torsion for metal processing: Fundamentals and applications’, Progress in Materials Science, vol. 53, no. 6, pp. 893–979, Aug. 2008, doi: 10.1016/j.pmatsci.2008.03.002.
  • [16] Y. Ito, K. Edalati, and Z. Horita, ‘High-pressure torsion of aluminum with ultrahigh purity (99.9999%) and occurrence of inverse Hall-Petch relationship’, Materials Science and Engineering A, vol. 679, pp. 428–434, Jan. 2017, doi: 10.1016/j.msea.2016.10.066.
  • [17] A. Fattah-alhosseini, A. R. Ansari, Y. Mazaheri, and M. K. Keshavarz, ‘Effect of immersion time on the passive and electrochemical response of annealed and nano-grained commercial pure titanium in Ringer's physiological solution at 37 °C’, Materials Science and Engineering: C, vol. 71, p. 771, 2017.
  • [18] M. Shahbaz, N. Pardis, R. Ebrahimi, and B. Talebanpour, ‘A novel single pass severe plastic deformation technique: Vortex extrusion’, Materials Science and Engineering: A, vol. 530, pp. 469–472, Dec. 2011, doi: 10.1016/j.msea.2011.09.114.
  • [19] R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zechetbauer, and Y. T. Zhu, ‘Producing bulk ultrafine-grained materials by severe plastic deformation’, JOM, vol. 58, no. 4, pp. 33–39, Apr. 2006, doi: 10.1007/s11837-006-0213-7.
  • [20] M. Richert, R. Hubicki, and P. Łebkowski, ‘Perspectives of Microstructure Refinement of Aluminum and Its Alloys by the Reciprocating Extrusion (Cyclic Extrusion Compression—CEC)’, Materials, vol. 15, p. 4006, Jun. 2022, doi: 10.3390/ma15114006.
  • [21] G. A. Manjunath, S. Shivakumar, S. P. Avadhani, and P. C. Sharath, ‘Investigation of mechanical properties and microstructural behavior of 7050 aluminium alloy by multi directional forging technique’, Materials Today: Proceedings, vol. 27, pp. 1147–1151, Jan. 2020, doi: 10.1016/j.matpr.2020.02.001.
  • [22] R. Kocich, G. Miroslav, M. Kursa, I. Szurman, and A. Macháčková, ‘Twist channel angular pressing (TCAP) as a method for increasing the efficiency of SPD’, Materials Science and Engineering: A, vol. 527, pp. 6386–6392, Sep. 2010, doi: 10.1016/j.msea.2010.06.057.
  • [23] S. Sepahi-Boroujeni and F. Fereshteh-Saniee, ‘The influences of the expansion equal channel angular extrusion operation on the strength and ductility of AZ80 magnesium alloy’, Materials Science and Engineering: A, vol. 636, pp. 249–253, Jun. 2015, doi: 10.1016/j.msea.2015.03.073.
  • [24] S. Öğüt, H. Kaya, A. Kentli, and M. Uçar, ‘Applying hybrid equal channel angular pressing (HECAP) to pure copper using optimized Exp.-ECAP die’, Int J Adv Manuf Technol, vol. 116, no. 11, pp. 3859–3876, Oct. 2021, doi: 10.1007/s00170-021-07717-9.
  • [25] K. Özbeyaz, H. Kaya, and A. Kentli, ‘Novel SPD Method: Twisted Variable Channel Angular Extrusion’, Met. Mater. Int., vol. 28, no. 5, pp. 1290-1305, May 2022, doi:10.1007/s12540-021-01086-4.
  • [26] M. Şahbaz, H. Kaya, and A. Kentli, ‘A new severe plastic deformation method: thin-walled open channel angular pressing (TWO-CAP)’, Int J Adv Manuf Technol, vol. 106, no. 3, pp. 1487–1496, Jan. 2020, doi: 10.1007/s00170-019-04748-1.
  • [27] G. Faraji, A. Babaei, M. M. Mashhadi, and K. Abrinia, ‘Parallel tubular channel angular pressing (PTCAP) as a new severe plastic deformation method for cylindrical tubes’, Materials Letters, vol. 77, pp. 82–85, Jun. 2012, doi: 10.1016/j.matlet.2012.03.007.
  • [28] N. Thangapandian, S. Balasivanandha Prabu, and K. A. Padmanabhan, ‘Effect of Temperature on Grain Size in AA6063 Aluminum Alloy Subjected to Repetitive Corrugation and Straightening’, Acta Metall. Sin. (Engl. Lett.), vol. 32, no. 7, pp. 835–844, Jul. 2019, doi: 10.1007/s40195-018-0866-6.
  • [29] H. Kaya, K. Özbeyaz, A. Kentli, M. Şahbaz, and S. Öğüt, Mechanical Properties and Electrical Conductivity Performance of ECAP Processed Al2024 Alloy. 2019.
  • [30] S. Öğüt, H. Kaya, and A. Kentli, ‘Comparison of the Effect of Equal Channel Angular Pressing, Expansion Equal Channel Angular Pressing, and Hybrid Equal Channel Angular Pressing on Mechanical Properties of AZ31 Mg Alloy’, J. of Materi Eng and Perform, vol. 31, no. 4, pp. 3341–3353, Apr. 2022, doi: 10.1007/s11665-021-06430-8.
  • [31] X. Zhao, X. Yang, X. Liu, C. T. Wang, Y. Huang, and T. G. Langdon, ‘Processing of commercial purity titanium by ECAP using a 90 degrees die at room temperature’, Materials Science and Engineering: A, vol. 607, pp. 482–489, Jun. 2014, doi: 10.1016/j.msea.2014.04.014.
  • [32] J. R. Davis, Aluminum and Aluminum Alloys. ASM International, 1993.
  • [33] A. Mashhuriazar, A. Ebrahimzadeh Pilehrood, H. Moghanni, A. H. Baghdadi, and H. Omidvar, ‘Finite Element Analysis and Optimization of Equal-Channel Angular Rolling Process by Using Taguchi Methodology’, J. of Materi Eng and Perform, vol. 32, no. 1, pp. 176–184, Jan. 2023, doi: 10.1007/s11665-022-07100-z.
  • [34] C. Obara, F. M. Mwema, J. N. Keraita, H. Shagwira, and J. O. Obiko, ‘A multi-response optimization of the multi-directional forging process for aluminium 7075 alloy using grey-based taguchi method’, SN Appl. Sci., vol. 3, no. 6, p. 596, May 2021, doi: 10.1007/s42452-021-04527-2.
  • [35] C. Hamzaçebı and F. Kutay, ‘Taguchi̇ Metodu: Bi̇r Uygulama: Taguchi Method: An Application.’, Teknoloji, vol. 6, no. 3/4, pp. 7–17, Jul. 2003.
  • [36] Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon, ‘An investigation of microstructural evolution during equal-channel angular pressing’, Acta Materialia, vol. 45, pp. 4733–4741, Jan. 1997, doi: 10.1016/S1359-6454(97)00100-6.
  • [37] D. M. Fouad, A. Moataz, W. H. El-Garaihy, and H. G. Salem, ‘Numerical and experimental analysis of multi-channel spiral twist extrusion processing of AA5083’, Materials Science and Engineering: A, vol. 764, p. 138216, Sep. 2019, doi: 10.1016/j.msea.2019.138216.
  • [38] S. A. A. Akbari Mousavi and A. R. Shahab, ‘Influence of Strain Accumulation on Microstructure of Aluminum 1100 in The Twist Extrusion’, Int. J. Mod. Phys. B, vol. 22, no. 18n19, pp. 2858–2865, Jul. 2008, doi: 10.1142/S0217979208047687.
  • [39] R. Kulagin, M. I. Latypov, H. S. Kim, V. Varyukhin, and Y. Beygelzimer, ‘Cross Flow During Twist Extrusion: Theory, Experiment, and Application’, Metall Mater Trans A, vol. 44, no. 7, pp. 3211–3220, Jul. 2013, doi: 10.1007/s11661-013-1661-7.
  • [40] ‘Twist Extrusion as a Potent Tool for Obtaining Advanced Engineering Materials: A Review  - Beygelzimer - 2017 - Advanced Engineering Materials - Wiley Online Library’. Accessed: May 31, 2023. [Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/adem.201600873
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ömer Karabey 0000-0002-5726-9284

Erken Görünüm Tarihi 25 Aralık 2023
Yayımlanma Tarihi 28 Aralık 2023
Gönderilme Tarihi 11 Mayıs 2023
Kabul Tarihi 15 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

IEEE Ö. Karabey, “Design, Finite Element Analysis and Optimization of Helical Angular Pressing (HAP) Method as a Novel SPD Technique”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 12, sy. 4, ss. 959–968, 2023, doi: 10.17798/bitlisfen.1295905.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr