Research Article
BibTex RIS Cite

Year 2025, Volume: 14 Issue: 2, 887 - 906, 30.06.2025
https://doi.org/10.17798/bitlisfen.1615182
https://izlik.org/JA83EG34MF

Abstract

References

  • C. Aktemur and S. G. Hacipasaoglu, “Assessment of an integrated organic rankine cycle (ORC)-vapor compression refrigeration (VCR) system using the energy, conventional exergy, and advanced exergy analysis,” Heat Transf. Res., vol. 52, no. 15, pp. 15–39, 2021, doi: 10.1615/HEATTRANSRES.2021037536.
  • Z. Ahmed and D. Kr Mahanta, “Thermodynamic Analysis of Combined ORC-VCR Powered by Waste Energy from Diesel Engine,” Int. J. Sci. Res., vol. 6, no. 6, pp. 2319–7064, 2015, [Online]. Available: www.ijsr.net.
  • B. Saleh, “Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy,” J. Adv. Res., vol. 7, no. 5, pp. 651–660, Sep. 2016, doi: 10.1016/j.jare.2016.06.006.
  • X. Yang, N. Zheng, L. Zhao, S. Deng, H. Li, and Z. Yu, “Analysis of a novel combined power and ejector-refrigeration cycle,” Energy Convers. Manag., vol. 108, pp. 266–274, 2016, doi: 10.1016/j.enconman.2015.11.019.
  • J. Wang and Y. Yang, “Energy, exergy and environmental analysis of a hybrid combined cooling heating and power system utilizing biomass and solar energy,” Energy Convers. Manag., vol. 124, pp. 566–577, 2016, doi: 10.1016/j.enconman.2016.07.059.
  • M. T. Nasir and K. C. Kim, “Working fluids selection and parametric optimization of an Organic Rankine Cycle coupled Vapor Compression Cycle (ORC-VCC) for air conditioning using low grade heat,” Energy Build., vol. 129, pp. 378–395, Oct. 2016, doi: 10.1016/j.enbuild.2016.07.068.
  • E. Cihan and B. Kavasogullari, “Energy and exergy analysis of a combined refrigeration and waste heat driven organic Rankine cycle system,” Therm. Sci., vol. 21, no. 6, pp. 2621–2631, 2017, doi: 10.2298/tsci150324002c.
  • B. Saleh, “Energy and exergy analysis of an integrated organic Rankine cycle-vapor compression refrigeration system,” Appl. Therm. Eng., vol. 141, no. June, pp. 697–710, 2018, doi: 10.1016/j.applthermaleng.2018.06.018.
  • B. Saleh et al., “Performance investigation of organic Rankine-vapor compression refrigeration integrated system activated by renewable energy,” Mech. Ind., vol. 20, no. 2, 2019, doi: 10.1051/meca/2019023.
  • O. Pektezel and H. I. Acar, “Energy and exergy analysis of combined organic rankine cycle-single and dual evaporator vapor compression refrigeration cycle,” Appl. Sci., vol. 9, no. 23, 2019, doi: 10.3390/app9235028.
  • N. Javanshir, S. M. Seyed Mahmoudi, and M. A. Rosen, “Thermodynamic and Exergoeconomic Analyses of a Novel Combined Cycle Comprised of Vapor-Compression Refrigeration and Organic Rankine Cycles,” Sustainability, vol. 11, no. 12, p. 3374, Jun. 2019, doi: 10.3390/su11123374.
  • Ashwni, A. F. Sherwani, and D. Tiwari, “Thermodynamic analysis of simple and modified organic Rankine cycle and vapor compression refrigeration (ORC–VCR) systems,” Environ. Prog. Sustain. Energy, vol. 40, no. 3, pp. 1–11, 2021, doi: 10.1002/ep.13577.
  • R. Touaibi, H. Köten, M. Feidt, and O. Boydak, “Investigation of three organic fluids effects on exergy analysis of a combined cycle: Organic rankine cycle / vapor compression refrigeration,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 52, no. 2, pp. 232–245, 2018.
  • Y. Maalem and H. Madani, “Thermodynamic Efficiency Analysis of a Combined Power and Cooling (ORC-VCRC) System Using Cyclopentane (C5H10) as a Substitute for Conventional Hydrocarbons,” Int. J. Thermodyn., vol. 27, no. 4, pp. 30–42, 2024, doi: 10.5541/ijot.1493436.
  • T. Bai, G. Yan, and J. Yu, “Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector,” Energy, vol. 84, pp. 325–335, May 2015, doi: 10.1016/j.energy.2015.02.104.
  • B. F. Tchanche, G. Papadakis, G. Lambrinos, and A. Frangoudakis, “Fluid selection for a low-temperature solar organic Rankine cycle,” Appl. Therm. Eng., vol. 29, no. 11–12, pp. 2468–2476, 2009, doi: 10.1016/j.applthermaleng.2008.12.025.
  • R. Lizarte, M. E. Palacios-Lorenzo, and J. D. Marcos, “Parametric study of a novel organic Rankine cycle combined with a cascade refrigeration cycle (ORC-CRS) using natural refrigerants,” Appl. Therm. Eng., vol. 127, pp. 378–389, 2017, doi: 10.1016/j.applthermaleng.2017.08.063.
  • B. Saleh, “Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy,” J. Adv. Res., vol. 7, no. 5, pp. 651–660, 2016, doi: 10.1016/j.jare.2016.06.006.
  • K. Rahbar, S. Mahmoud, R. K. Al-Dadah, N. Moazami, and S. A. Mirhadizadeh, “Review of organic Rankine cycle for small-scale applications,” Energy Convers. Manag., vol. 134, pp. 135–155, 2017, doi: 10.1016/j.enconman.2016.12.023.
  • M. A. Rosen and İ. Dincer, Exergy: Energy, Environment and Sustainable Development, 1st ed., Burlington, USA, Elsevier, 2007.
  • A. Bejan, Advanced Engineering Thermodynamics, 3 rd ed., Durham, North Carolina, Wiley, 2006.
  • A. A. Kornhauser, “The use of an ejector in a geothermal flash system,” in Proceedings of the Intersociety Energy Conversion Engineering Conference, 1990, vol. 5, pp. 79–84, doi: 10.1109/iecec.1990.747930.
  • H. Li, X. Bu, L. Wang, Z. Long, and Y. Lian, “Hydrocarbon working fluids for a Rankine cycle powered vapor compression refrigeration system using low-grade thermal energy,” Energy Build., vol. 65, pp. 167–172, 2013, doi: 10.1016/j.enbuild.2013.06.012.
  • O. Au, “Methods of calculating Total Equivalent Warming Impact (TEWI) 2012,” 2012. [Online]. Available: www.airah.org.au.
  • P. Gullo, K. M. Tsamos, A. Hafner, K. Banasiak, Y. T. Ge, and S. A. Tassou, “Crossing CO2 equator with the aid of multi-ejector concept: A comprehensive energy and environmental comparative study,” Energy, vol. 164, pp. 236–263, Dec. 2018, doi: 10.1016/j.energy.2018.08.205.
  • Hacıpaşaoğlu, S. G., “A novel organic Rankine cycle-ejector booster refrigeration cycle for low-temperature sources,” Applied Thermal Engineering, 125741. doi: https://doi.org/10.1016/j.applthermaleng.2025.125741

Determining environmentally friendly working fluid for an ejector organic Rankine cycle using a low-temperature source

Year 2025, Volume: 14 Issue: 2, 887 - 906, 30.06.2025
https://doi.org/10.17798/bitlisfen.1615182
https://izlik.org/JA83EG34MF

Abstract

This paper investigates the thermodynamic performance of various environmentally friendly fluids in an integrated organic Rankine cycle (ORC) and ejector booster refrigeration cycle (EBRC) system. The study aims to identify optimal working fluids that enhance system efficiency while minimizing environmental impact. Several natural and synthetic fluids, including those with low global warming potential (GWP) and zero ozone depletion potential (ODP), are analyzed for their thermodynamic properties such as coefficient of performance (COP), mass flow rate of cycle, expander expansion ratio (EER) and compressor compression ratio (CCR). Detailed thermodynamic analysis, including energy balances, is conducted for each fluid across the system components, assessing their effect on system performance. The results reveal that certain fluids offer significant improvements in both energy efficiency and environmental sustainability compared to other refrigerants. Based on the analyses, in the ORC-EBRC cycle, cyclopentane was found to be fluid with the lowest total mass flow rate and the highest COP. This study provides valuable insights into the selection of sustainable working fluids for ORC-EBRC systems, offering guidance for future applications in renewable energy utilization and cooling technologies.

Ethical Statement

The study is complied with research and publication ethics.

References

  • C. Aktemur and S. G. Hacipasaoglu, “Assessment of an integrated organic rankine cycle (ORC)-vapor compression refrigeration (VCR) system using the energy, conventional exergy, and advanced exergy analysis,” Heat Transf. Res., vol. 52, no. 15, pp. 15–39, 2021, doi: 10.1615/HEATTRANSRES.2021037536.
  • Z. Ahmed and D. Kr Mahanta, “Thermodynamic Analysis of Combined ORC-VCR Powered by Waste Energy from Diesel Engine,” Int. J. Sci. Res., vol. 6, no. 6, pp. 2319–7064, 2015, [Online]. Available: www.ijsr.net.
  • B. Saleh, “Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy,” J. Adv. Res., vol. 7, no. 5, pp. 651–660, Sep. 2016, doi: 10.1016/j.jare.2016.06.006.
  • X. Yang, N. Zheng, L. Zhao, S. Deng, H. Li, and Z. Yu, “Analysis of a novel combined power and ejector-refrigeration cycle,” Energy Convers. Manag., vol. 108, pp. 266–274, 2016, doi: 10.1016/j.enconman.2015.11.019.
  • J. Wang and Y. Yang, “Energy, exergy and environmental analysis of a hybrid combined cooling heating and power system utilizing biomass and solar energy,” Energy Convers. Manag., vol. 124, pp. 566–577, 2016, doi: 10.1016/j.enconman.2016.07.059.
  • M. T. Nasir and K. C. Kim, “Working fluids selection and parametric optimization of an Organic Rankine Cycle coupled Vapor Compression Cycle (ORC-VCC) for air conditioning using low grade heat,” Energy Build., vol. 129, pp. 378–395, Oct. 2016, doi: 10.1016/j.enbuild.2016.07.068.
  • E. Cihan and B. Kavasogullari, “Energy and exergy analysis of a combined refrigeration and waste heat driven organic Rankine cycle system,” Therm. Sci., vol. 21, no. 6, pp. 2621–2631, 2017, doi: 10.2298/tsci150324002c.
  • B. Saleh, “Energy and exergy analysis of an integrated organic Rankine cycle-vapor compression refrigeration system,” Appl. Therm. Eng., vol. 141, no. June, pp. 697–710, 2018, doi: 10.1016/j.applthermaleng.2018.06.018.
  • B. Saleh et al., “Performance investigation of organic Rankine-vapor compression refrigeration integrated system activated by renewable energy,” Mech. Ind., vol. 20, no. 2, 2019, doi: 10.1051/meca/2019023.
  • O. Pektezel and H. I. Acar, “Energy and exergy analysis of combined organic rankine cycle-single and dual evaporator vapor compression refrigeration cycle,” Appl. Sci., vol. 9, no. 23, 2019, doi: 10.3390/app9235028.
  • N. Javanshir, S. M. Seyed Mahmoudi, and M. A. Rosen, “Thermodynamic and Exergoeconomic Analyses of a Novel Combined Cycle Comprised of Vapor-Compression Refrigeration and Organic Rankine Cycles,” Sustainability, vol. 11, no. 12, p. 3374, Jun. 2019, doi: 10.3390/su11123374.
  • Ashwni, A. F. Sherwani, and D. Tiwari, “Thermodynamic analysis of simple and modified organic Rankine cycle and vapor compression refrigeration (ORC–VCR) systems,” Environ. Prog. Sustain. Energy, vol. 40, no. 3, pp. 1–11, 2021, doi: 10.1002/ep.13577.
  • R. Touaibi, H. Köten, M. Feidt, and O. Boydak, “Investigation of three organic fluids effects on exergy analysis of a combined cycle: Organic rankine cycle / vapor compression refrigeration,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 52, no. 2, pp. 232–245, 2018.
  • Y. Maalem and H. Madani, “Thermodynamic Efficiency Analysis of a Combined Power and Cooling (ORC-VCRC) System Using Cyclopentane (C5H10) as a Substitute for Conventional Hydrocarbons,” Int. J. Thermodyn., vol. 27, no. 4, pp. 30–42, 2024, doi: 10.5541/ijot.1493436.
  • T. Bai, G. Yan, and J. Yu, “Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector,” Energy, vol. 84, pp. 325–335, May 2015, doi: 10.1016/j.energy.2015.02.104.
  • B. F. Tchanche, G. Papadakis, G. Lambrinos, and A. Frangoudakis, “Fluid selection for a low-temperature solar organic Rankine cycle,” Appl. Therm. Eng., vol. 29, no. 11–12, pp. 2468–2476, 2009, doi: 10.1016/j.applthermaleng.2008.12.025.
  • R. Lizarte, M. E. Palacios-Lorenzo, and J. D. Marcos, “Parametric study of a novel organic Rankine cycle combined with a cascade refrigeration cycle (ORC-CRS) using natural refrigerants,” Appl. Therm. Eng., vol. 127, pp. 378–389, 2017, doi: 10.1016/j.applthermaleng.2017.08.063.
  • B. Saleh, “Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy,” J. Adv. Res., vol. 7, no. 5, pp. 651–660, 2016, doi: 10.1016/j.jare.2016.06.006.
  • K. Rahbar, S. Mahmoud, R. K. Al-Dadah, N. Moazami, and S. A. Mirhadizadeh, “Review of organic Rankine cycle for small-scale applications,” Energy Convers. Manag., vol. 134, pp. 135–155, 2017, doi: 10.1016/j.enconman.2016.12.023.
  • M. A. Rosen and İ. Dincer, Exergy: Energy, Environment and Sustainable Development, 1st ed., Burlington, USA, Elsevier, 2007.
  • A. Bejan, Advanced Engineering Thermodynamics, 3 rd ed., Durham, North Carolina, Wiley, 2006.
  • A. A. Kornhauser, “The use of an ejector in a geothermal flash system,” in Proceedings of the Intersociety Energy Conversion Engineering Conference, 1990, vol. 5, pp. 79–84, doi: 10.1109/iecec.1990.747930.
  • H. Li, X. Bu, L. Wang, Z. Long, and Y. Lian, “Hydrocarbon working fluids for a Rankine cycle powered vapor compression refrigeration system using low-grade thermal energy,” Energy Build., vol. 65, pp. 167–172, 2013, doi: 10.1016/j.enbuild.2013.06.012.
  • O. Au, “Methods of calculating Total Equivalent Warming Impact (TEWI) 2012,” 2012. [Online]. Available: www.airah.org.au.
  • P. Gullo, K. M. Tsamos, A. Hafner, K. Banasiak, Y. T. Ge, and S. A. Tassou, “Crossing CO2 equator with the aid of multi-ejector concept: A comprehensive energy and environmental comparative study,” Energy, vol. 164, pp. 236–263, Dec. 2018, doi: 10.1016/j.energy.2018.08.205.
  • Hacıpaşaoğlu, S. G., “A novel organic Rankine cycle-ejector booster refrigeration cycle for low-temperature sources,” Applied Thermal Engineering, 125741. doi: https://doi.org/10.1016/j.applthermaleng.2025.125741
There are 26 citations in total.

Details

Primary Language English
Subjects Energy Efficiency, Mechanical Engineering (Other)
Journal Section Research Article
Authors

Servet Giray Hacıpaşaoğlu 0000-0001-6698-3562

Submission Date January 7, 2025
Acceptance Date April 10, 2025
Early Pub Date June 27, 2025
Publication Date June 30, 2025
DOI https://doi.org/10.17798/bitlisfen.1615182
IZ https://izlik.org/JA83EG34MF
Published in Issue Year 2025 Volume: 14 Issue: 2

Cite

IEEE [1]S. G. Hacıpaşaoğlu, “Determining environmentally friendly working fluid for an ejector organic Rankine cycle using a low-temperature source”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 14, no. 2, pp. 887–906, June 2025, doi: 10.17798/bitlisfen.1615182.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS