Araştırma Makalesi
BibTex RIS Kaynak Göster

Three Dimensional Searching Surface Path Planning of Mobil Robots

Yıl 2019, , 298 - 307, 12.03.2019
https://doi.org/10.17798/bitlisfen.473325

Öz

Route
planning of mobile robots has vital importance in the industrial robotic
navigation applications of single / multi-floors closed area. In this study, it
is proposed to apply an optimal route planning based on the graph search
algorithm for orienting mobile robots in multiple floors industrial building
where multiple exits are possible for each floor. For the route planning, the
distance is calculated on the basis of a 3-dimensional cubic surface containing
two floors, in which the starting and destination points are located. Dijkstra
graph searching algorithm is preferred since it calculates the distances from
starting point to all points in specified surfaces in order to create shortest
route avoiding obstacles.  In the study,
two different scenarios including different situations are created for
orienting the mobile robot. These scenarios include the situation of the
destination point on the same and on the different floor with the starting
point of the mobile robot. Simulation results of the shortest routes are
presented in the paper using MATLAB environment. 

Kaynakça

  • 1. Galán-García, J. L., Aguilera-Venegas, G., Galán-García, M. Á., Rodríguez-Cielos, P. 2015. A new Probabilistic Extension of Dijkstra’s Algorithm to simulate more realistic traffic flow in a smart city. Applied Mathematics and Computation, 267, 780-789.
  • 2. Deng, Y., Chen, Y., Zhang, Y., Mahadevan, S. 2012. Fuzzy Dijkstra algorithm for shortest path problem under uncertain environment. Applied Soft Computing, 12(3), 1231-1237.
  • 3. Dobrilovic, D., Jevtic, V., Beker, I., Stojanov, Z. 2012. Shortest-path based model for warehouse inner transportation optimization. In Applied Computational Intelligence and Informatics (SACI), 2012 7th IEEE International Symposium on (pp. 63-68). IEEE.
  • 4. Chen, Y. Z., Shen, S. F., Chen, T., Yang, R. 2014. Path optimization study for vehicles evacuation based on Dijkstra algorithm. Procedia Engineering, 71, 159-165. 5. Garcia, M., Viguria, A., Ollero, A. 2013. Dynamic graph-search algorithm for global path planning in presence of hazardous weather. Journal of Intelligent & Robotic Systems, 1-11.
  • 6. Yershov, D. S., LaValle, S. M. 2011. Simplicial Dijkstra and A* algorithms for optimal feedback planning. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on (pp. 3862-3867). IEEE.
  • 7. Jiang, J. R., Huang, H. W., Liao, J. H., Chen, S. Y. 2014. Extending Dijkstra's shortest path algorithm for software defined networking. In Network Operations and Management Symposium (APNOMS), 2014 16th Asia-Pacific (pp. 1-4). IEEE.
  • 8. Djojo, M. A., & Karyono, K. 2013. Computational load analysis of Dijkstra, A*, and Floyd-Warshall algorithms in mesh network. In Robotics, Biomimetics, and Intelligent Computational Systems (ROBIONETICS), 2013 IEEE International Conference on (pp. 104-108). IEEE.
  • 9. Kang, H. I., Lee, B., Kim, K. 2008. Path planning algorithm using the particle swarm optimization and the improved Dijkstra algorithm. In Computational Intelligence and Industrial Application, 2008. PACIIA'08. Pacific-Asia Workshop on (Vol. 2, pp. 1002-1004). IEEE.
  • 10. Fadzli, S. A., Abdulkadir, S. I., Makhtar, M., Jamal, A. A. 2015. Robotic indoor path planning using dijkstra's algorithm with multi-layer dictionaries. In Information Science and Security (ICISS), 2015 2nd International Conference on (pp. 1-4). IEEE.
  • 11. Zhang, D., Wei, Z., Kim, J. H., Tang, S. 2010. An optimized Dijkstra algorithm for Embedded-GIS. In Computer Design and Applications (ICCDA), 2010 International Conference on (Vol. 1, pp. V1-147). IEEE.
  • 12. Yin, C., Wang, H. 2010. Developed Dijkstra shortest path search algorithm and simulation. In Computer Design and Applications (ICCDA), 2010 International Conference on (Vol. 1, pp. V1-116). IEEE.
  • 13. http://www.zafercomert.com/Medya/2015_05_11_2_121_69f9a888.pdf#viewer.action=download (erişim tarihi: 01.03.2016).
  • 14. Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. Numerische mathematik, 1(1), 269-271.
  • 15. Boğar, E., Beyhan, S. 2016. A Hybrid Genetic Algorithm for Mobile Robot Shortest Path Problem, International Journal of Intelligent Systems and Applications in Engineering, vol. 4 (Special Issue-1).
  • 16. Wang, H., Yu, Y., Yuan, Q. 2011. Application of Dijkstra algorithm in robot path-planning. In Mechanic Automation and Control Engineering (MACE), 2011 Second International Conference on (pp. 1067-1069). IEEE.
  • 17. Ferone, D., Festa, P., Guerriero, F., & Laganà, D. 2016. The constrained shortest path tour problem. Computers & Operations Research, 74, 64-77.

Üç Boyutlu Bir Arama Yüzeyi için Mobil Robotların Yol Planlaması

Yıl 2019, , 298 - 307, 12.03.2019
https://doi.org/10.17798/bitlisfen.473325

Öz

Mobil robotların yol planlaması, tek/çok katlı kapalı
alan endüstriyel robotik navigasyon uygulamalarında hayati bir öneme sahiptir.
Bu çalışmada, çok katlı ve her kat için birden çok katlar arası geçişin mümkün
olduğu endüstriyel bir binada mobil robotların yönlendirilmesi için graf arama
algoritmasına dayanan bir optimum yol planlaması önerilmiştir. Yol planlaması
için başlangıç ve varış noktalarının yer aldığı iki katı içeren 3 boyutlu kübik
yüzey baz alınarak mesafe hesaplanmıştır. Dijkstra graf arama algoritması,
engellerden sakınarak en kısa yolun bulunması için belirlenen yüzeylerde
başlangıç noktasından tüm noktalara olan mesafeleri hesapladığından dolayı
çalışmada bu algoritma tercih edilmiştir.



Çalışmada mobil robotun yönlendirilmesi için farklı
durumları içeren iki farklı senaryo oluşturulmuştur. Bu senaryolar hedef
noktasının mobil robotun bulunduğu kattaki başlangıç noktası ile aynı katta ve
farklı katta olması durumlarını içermektedir. Makalede, MATLAB ortamında elde
edilen en kısa yolu gösteren benzetim sonuçları sunulmuştur.

Kaynakça

  • 1. Galán-García, J. L., Aguilera-Venegas, G., Galán-García, M. Á., Rodríguez-Cielos, P. 2015. A new Probabilistic Extension of Dijkstra’s Algorithm to simulate more realistic traffic flow in a smart city. Applied Mathematics and Computation, 267, 780-789.
  • 2. Deng, Y., Chen, Y., Zhang, Y., Mahadevan, S. 2012. Fuzzy Dijkstra algorithm for shortest path problem under uncertain environment. Applied Soft Computing, 12(3), 1231-1237.
  • 3. Dobrilovic, D., Jevtic, V., Beker, I., Stojanov, Z. 2012. Shortest-path based model for warehouse inner transportation optimization. In Applied Computational Intelligence and Informatics (SACI), 2012 7th IEEE International Symposium on (pp. 63-68). IEEE.
  • 4. Chen, Y. Z., Shen, S. F., Chen, T., Yang, R. 2014. Path optimization study for vehicles evacuation based on Dijkstra algorithm. Procedia Engineering, 71, 159-165. 5. Garcia, M., Viguria, A., Ollero, A. 2013. Dynamic graph-search algorithm for global path planning in presence of hazardous weather. Journal of Intelligent & Robotic Systems, 1-11.
  • 6. Yershov, D. S., LaValle, S. M. 2011. Simplicial Dijkstra and A* algorithms for optimal feedback planning. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on (pp. 3862-3867). IEEE.
  • 7. Jiang, J. R., Huang, H. W., Liao, J. H., Chen, S. Y. 2014. Extending Dijkstra's shortest path algorithm for software defined networking. In Network Operations and Management Symposium (APNOMS), 2014 16th Asia-Pacific (pp. 1-4). IEEE.
  • 8. Djojo, M. A., & Karyono, K. 2013. Computational load analysis of Dijkstra, A*, and Floyd-Warshall algorithms in mesh network. In Robotics, Biomimetics, and Intelligent Computational Systems (ROBIONETICS), 2013 IEEE International Conference on (pp. 104-108). IEEE.
  • 9. Kang, H. I., Lee, B., Kim, K. 2008. Path planning algorithm using the particle swarm optimization and the improved Dijkstra algorithm. In Computational Intelligence and Industrial Application, 2008. PACIIA'08. Pacific-Asia Workshop on (Vol. 2, pp. 1002-1004). IEEE.
  • 10. Fadzli, S. A., Abdulkadir, S. I., Makhtar, M., Jamal, A. A. 2015. Robotic indoor path planning using dijkstra's algorithm with multi-layer dictionaries. In Information Science and Security (ICISS), 2015 2nd International Conference on (pp. 1-4). IEEE.
  • 11. Zhang, D., Wei, Z., Kim, J. H., Tang, S. 2010. An optimized Dijkstra algorithm for Embedded-GIS. In Computer Design and Applications (ICCDA), 2010 International Conference on (Vol. 1, pp. V1-147). IEEE.
  • 12. Yin, C., Wang, H. 2010. Developed Dijkstra shortest path search algorithm and simulation. In Computer Design and Applications (ICCDA), 2010 International Conference on (Vol. 1, pp. V1-116). IEEE.
  • 13. http://www.zafercomert.com/Medya/2015_05_11_2_121_69f9a888.pdf#viewer.action=download (erişim tarihi: 01.03.2016).
  • 14. Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. Numerische mathematik, 1(1), 269-271.
  • 15. Boğar, E., Beyhan, S. 2016. A Hybrid Genetic Algorithm for Mobile Robot Shortest Path Problem, International Journal of Intelligent Systems and Applications in Engineering, vol. 4 (Special Issue-1).
  • 16. Wang, H., Yu, Y., Yuan, Q. 2011. Application of Dijkstra algorithm in robot path-planning. In Mechanic Automation and Control Engineering (MACE), 2011 Second International Conference on (pp. 1067-1069). IEEE.
  • 17. Ferone, D., Festa, P., Guerriero, F., & Laganà, D. 2016. The constrained shortest path tour problem. Computers & Operations Research, 74, 64-77.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Gonca Ozmen Koca

Şengül Doğan

Yayımlanma Tarihi 12 Mart 2019
Gönderilme Tarihi 22 Ekim 2018
Kabul Tarihi 17 Ocak 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

IEEE G. Ozmen Koca ve Ş. Doğan, “Üç Boyutlu Bir Arama Yüzeyi için Mobil Robotların Yol Planlaması”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 8, sy. 1, ss. 298–307, 2019, doi: 10.17798/bitlisfen.473325.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr