Myrtus communis L. (Mersin) Yaprak Ekstraktının Genoprotektif Etkisinin Somatik Mutasyon ve Rekombinasyon Testi ile Değerlendirilmesi
Yıl 2019,
, 875 - 882, 30.09.2019
Selda Öz
,
Şükran Çakır Arıca
Öz
Bu çalışmada Myrtus communisL. (mersin) yaprak ekstraktının genoprotektif etkisi somatik mutasyon ve rekombinasyon testi (SMART) ile incelendi. Yüksek genotoksik etkiye sahip kemoterapötik bir ajan olan doksorubisin (DXR) pozitif kontrol olarak kullanıldı. Test maddeleri flare (flr3) ve çoklu kanat kılı (mwh) mutant işaret genlerini taşıyan üç günlük (72 ± 4 saat) transheterozigot Drosophila melanogaster larvalarına uygulandı. Mersin yaprak ekstraktı, genotoksik etkisini değerlendirmek için tek başına (1,5 ve 10 mg/mL) ve antigenotoksik etkisini değerlendirmek için doksorubisin (0,125 mg/ml) ile birlikte uygulandı. İnhibisyon yüzdeleri 1, 5 ve 10 mg/mL dozlarında sırasıyla %91.70, % 97.51 ve % 98.34 olarak hesaplandı. Bu çalışmadan elde edilen sonuçlar mersin yaprak ekstraktının test edilen tüm dozlarda doksorubisin kaynaklı mutant klon oluşumunu inhibe ederek antigenotoksik etki gösterdiğini ortaya koymuştur.
Destekleyen Kurum
Kırıkkale Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Teşekkür
Bu çalışma Kırıkkale Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir (Proje No: 2012/010).
Kaynakça
- 1. Liska D.J. 1998. The Detoxification Enzyme Systems, Alternative Medicine Review, 33 (3): 187-198.
- 2. Kennedy S.R., Loeb L.A. Herr A.J. 2012. Somatic mutations in aging, cancer and neurodegeneration, Mechanisms of Ageing and Development, 133 (4): 118-126.
- 3. Poduri A., Evrony G.D., Cai X.Y., Walsh C.A. 2013. Somatic Mutation, Genomic Variation, and Neurological Disease, Science , 341 (6141): 1237758.
- 4. Khalil W.K.B., Abidli N., Ghaly I.S., Hassanane M.M., Sharafeldin E.A. 2015. Myrtus Species Prevents Reproductive Toxicity Induced By Doxorubicin In Male Mice, Asian Journal of Pharmaceutical and Clinical Research, 8 (3): 169-175
- 5. Munari C.C., de Oliveira P.F., Leandro L.F., Pimenta L.M., Ferreira N.H., da Costa J de C., Bastos J.K., Tavares D.C. 2014. In vivo assessment of genotoxic, antigenotoxic and anticarcinogenic activities of Solanum lycocarpum fruits glycoalkaloidic extract, PLoS One, 9 (11): e111999.
- 6. Qiu Z., Tang M., Deng G., Yang H., Zhang X., Huang S., Wu L. 2014. Antioxidant and antigenotoxic activities of ethanol extracts from Rhus chinensis Mill leaves, Food Science and Biotechnology, 23 (4): 1213-1221.
- 7. Aleksic V., Knezevic P. 2014. Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L, Microbiological Research, 169 (4): 240-254.
- 8. Alipour G., Dashti S., Hosseinzadeh H. 2014. Review of Pharmacological Effects of Myrtus communis L. and its Active Constituents, Phytotherapy Research, 28 (8): 1125-1136.
- 9. Bouzabata A., Cabral C., Gonçalves M.J., Cruz M.T., Bighelli A., Cavaleiro C., Casanova J., Tomi F., Salgueiro L. 2015. Myrtus communis L. as source of a bioactive and safe essential oil, Food and Chemical Toxicology, 75: 166-172
- 10. Aidi Wannes W., Mhamdi B., Sriti J., Ben Jemia M., Ouchikh O., Hamdaoui G., Kchouk M.E., Marzouk B. 2010. Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower, Food and Chemical Toxicology, 48 (5): 1362-1370.
- 11. Cherrat L., Espina L., Bakkali M., García-Gonzalo D., Pagán R., Laglaoui A. 2014. Chemical composition and antioxidant properties of Laurus nobilis L. and Myrtus communis L. essential oils from Morocco and evaluation of their antimicrobial activity acting alone or in combined processes for food preservation, Journal of the Science of Food and Agriculture, 94 (6): 1197-1204
- 12. Malla S., Prasad Niraula N., Singh B., Liou K., Sohng J.K. 2010. Limitations in doxorubicin production from Streptomyces peucetius, Microbiological Research, 165 (5): 427-435.
- 13. Antunes L.M.G., de Barros E Lima Bueno R., da Luz Dias F., de Lourdes Pieres Bianchi M. 2007. Acetylsalicylic acid exhibits anticlastogenic effects on cultured human lymphocytes exposed to doxorubicin, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 626 (1): 155-161.
- 14. Islaih M., Halstead B.W., Kadura I.A., Li B., Reid-Hubbard J.L., Flick L., Altizer J.L., Deahl J.T., Monteith D.K., Newton R.K., Watson D.E. 2005. Relationships between genomic, cell cycle, and mutagenic responses of TK6 cells exposed to DNA damaging chemicals, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 578 (1-2): 100-116.
- 15. Saturnino R.S., Machado N.M., Lopes J.C., Nepomuceno J.C. 2018. Assessment of the mutagenic, recombinogenic, and carcinogenic potential of amphotericin B in somatic cells of Drosophila melanogaster, Drug and chemical toxicology, 41 (1): 9-15.
- 16. Orsolin P.C., Silva-Oliveira R.G., Nepomuceno J.C. 2016. Modulating effect of simvastatin on the DNA damage induced by doxorubicin in somatic cells of Drosophila melanogaster, Food and Chemical Toxicology, 90: 10-17.
- 17. Graf U., Würgler F.E., Katz A.J., Frei H., Juan H., Hall J.V. 1984. Somatic Mutation and Recombination Test in Drosophila melanogaster, Enviromental Mutagenesis, 6 (2): 153-188.
- 18. Graf U., Abraham S.K., Guzmán-Rincón J., Würgler F.E. 1998. Antigenotoxicity studies in Drosophila melanogaster, Mutation Research/Genetic Toxicology, 402 (1-2): 203-209.
- 19. Mollet P., Würgler F.E. 1974. Detection of somatic recombination and mutation in Drosophila. A method for testing genetic activity of chemical compounds, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 25 (3): 421-424,
- 20. Graf U., Frei H., Kagi A., Katz A.J., Würgler F.E. 1989. Thirty compounds tested in the Drosophila wing spot test, Mutation Research/Genetic Toxicology, 222 (4): 359-373.
- 21. Kastenbaum M.A., Bowman, K.O. 1970. Tables for determining the statistical significance of mutation frequencies, Mutation Research, 9 (5): 527-549.
- 22. Frei H., Würgler, F.E. 1988. Statistical methods to decide whether mutagenicity test data from Drosophila assays indicate a positive, negative, or inconclusive result, Mutation Research/Environmental Mutagenesis and Related Subjects, 203 (4): 297-308.
- 23. Abraham S.K. 1994. Antigenotoxicity of coffee in the Drosophila assay for somatic mutation and recombination, Mutagenesis, 9 (4): 383-386.
- 24. Xue H., Ren W., Denkinger M., Schlotzer E., Wischmeyer P.E. 2015. Nutrition Modulation of Cardiotoxicity and Anticancer Efficacy Related to Doxorubicin Chemotherapy by Glutamine and ω-3 Polyunsaturated Fatty Acids, Journal of Parenteral and Enteral Nutrition, 40 (1): 52-66.
- 25. Asensio-López M.C., Soler F, Sánchez-Más J, Pascual-Figal D, Fernández-Belda F, Lax A. 2016. Early oxidative damage induced by doxorubicin: source of production, protection by GKT137831 and effect on Ca2+ transporters in HL-1 cardiomyocytes, Archives of Biochemistry and Biophysics, 594: 26-36.
- 26. Ray P.D., Huang B., Tsuji Y. 2012. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cellular Signalling, 24 (5): 981-990
- 27. Valko M., Rhodes C.J., Moncol J., Izakovic M., Mazur M. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer, Chemico-Biological Interactions, 160 (1): 1-40
- 28. Asmat U., Abad K., Ismail K. 2016. Diabetes mellitus and oxidative stress—a concise review, Saudi Pharmaceutical Journal, 24 (5): 547-553.
- 29. Bhat A.H., Dar K.B., Anees S., Zargar M.A., Masood A., Sofi M.A., Ganie S.A. 2015. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight, Biomedicine & Pharmacotherapy, 74: 101-110.
- 30. Gecit İ., Aslan M., Güneş M., Pirinççi N., Esen R., Demir H., Ceylan K. 2012. Serum prolidase activity, oxidative stress, and nitric oxide levels in patients with bladder cancer, Journal of Cancer Research and Clinical Oncology, 138 (5): 739-743.
- 31. Birben E., Sahiner U.M., Sackesen C., Erzurum S., Kalayci O. 2012 Oxidative stress and antioxidant defense, World Allergy Organization Journal, 5 (1): 9-19
- 32. Dai D.F., Chiao Y.A., Marcinek D.J., Szeto H.H. Rabinovitch P.S. 2014. Mitochondrial oxidative stress in aging and healthspan, Longevity and Healthspan, 3: 6.
- 33. Amensour M., Sendra E., Abrini J., Pérez-Alvarez J.A., FernándezLópez J. 2010. Antioxidant activity and total phenolic compounds of myrtle extracts, CyTA-Journal of Food, 8 (2): 95-101.
- 34. Babou L., Hadidi L., Grosso C., Zaidi F., Valentão P., Andrade P. B. 2016. Study of phenolic composition and antioxidant activity of myrtle leaves and fruits as a function of maturation, European Food Research and Technology, 242 (9): 1447-1457.
- 35. Díaz-de-Cerio E., Arráez-Román D., Segura-Carretero A., Ferranti P., Nicoletti R., Perrotta G. M., Gómez-Caravaca A.M. 2018. Establishment of pressurized-liquid extraction by response surface methodology approach coupled to HPLC-DAD-TOF-MS for the determination of phenolic compounds of myrtle leaves, Analytical and bioanalytical chemistry, 410 (15): 3547-3557.
- 36. Hayder N., Bouhlel I., Skandrani I., Kadri M., Steiman R., Guiraud P., Mariotte A.M., Ghedira K., Dijoux-Franca M.G., Chekir-Ghedira L. 2008. In vitro antioxidant and antigenotoxic potentials of myricetin-3-o-galactoside and myricetin-3-o-rhamnoside from Myrtus communis: modulation of expression of genes involved in cell defence system using cDNA microarray, Toxicology In Vitro, 22 (3): 567-581.
- 37. Rosa A., Deiana M., Casu V., Corona G., Appendino G., Bianchi F., Ballero M., Dessì M.A. 2003. Antioxidant activity of oligomeric acylphloroglucinols from Myrtus communis L., Free Radical Research, 37 (9): 1013-1019
- 38. Rosa A., Melis M.P., Deiana M., Atzeri A., Appendino G., Corona G., Incani A., Loru D., Dessì M.A. 2008. Protective effect of the oligomeric acylphloroglucinols from Myrtus communis on cholesterol and human low density lipoprotein oxidation, Chemistry and Physics of Lipids, 155 (1): 16-23
- 39. Chen A.Y., Chen Y.C. 2013. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention, Food Chemistry, 138 (4): 2099