Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, , 697 - 702, 15.06.2020
https://doi.org/10.17798/bitlisfen.592947

Öz

Kaynakça

  • Reference1. Wallace P. R. 1947. The Band Theory of Graphite, Phys. Rev., 71, 622.
  • Reference2. Semenof G. W. 1984. Condensed-Matter Simulation of a Three-Dimensional Anomaly, Phys. Rev. Lett., 53, 2449.
  • Reference3. Geim A. K., Novoselov K. S. 2007. The rise of graphene, Nat. Mater., 6, 183.
  • Reference4. Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K. 2009. The electronic properties of graphene, Rev. Mod. Phys., 81, 109.
  • Reference5. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A. 2005. Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197.
  • Reference6. Zhang Y., Tan Y.-W., Stormer H. L., Kim P. 2005. Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, 438, 201.
  • Reference7. Cserti J., Csord´as A., D´avid G. 2007. Role of the Trigonal Warping on the Minimal Conductivity of Bilayer Graphene, Phys. Rev. Lett., 99, 066802.Reference8. Moghaddam A. G., Zareyan M. 2009. Anisotropic minimal conductivity of graphene bilayers, Phys. Rev. B, 79, 073401.
  • Reference9. Koshino M., Ando T. 2006. Transport in bilayer graphene: Calculations within a self-consistent Born approximation, Phys. Rev. B, 73, 245403. Reference10. Snyman I., Beenakker C. W. J. 2007. Ballistic transmission through a graphene bilayer, Phys. Rev. B, 75, 045322.
  • Reference11. Peres N. M. R. 2010. Colloquium: The transport properties of graphene: An introduction, Rev. Mod. Phys., 82, 2673.
  • Reference12. Das Sarma S., Adam S., Hwang E. H., Rossi E. 2011. Electronic transport in two-dimensional graphene, Rev. Mod. Phys., 83, 407.
  • Reference13. Haldane F. D. M. 1988. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly", Phys. Rev. Lett., 61, 2015.
  • Reference14. Ryu S., Mudry C., Hou C-Y, Chamon C. 2009. Masses in graphenelike two-dimensional electronic systems: Topological defects in order parameters and their fractional exchange statistics, Phys. Rev. B 105, 205319.
  • Reference15. Ezawa M. 2015. Photo-Induced Topological Superconductor in Silicene, Germanene, and Stanene, J. Supercond. Nov. Magn., 28, 1249.
  • Reference16. Ezawa M. 2013. Single Dirac-cone state and quantum Hall effects in a honeycomb structure, EPLA. 104, 27006.
  • Reference17. Ezawa M. 2013. Photoinduced Topological Phase Transition and a Single Dirac-Cone State in Silicene, Phys. Rev. Lett. 110, 026603.
  • Reference18. Kitagawa T., Oka T., Brataas A., Fu L.,. Demler E. 2011. Transport properties of nonequilibrium systems under the application of light: Photoinduced quantum Hall insulators without Landau levels, Phys. Rev. B 84, 235108.
  • Reference19. Ajiki H., Ando T. 1996. Energy Bands of Carbon Nanotubes in Magnetic Fields, J. Phys. Soc. Jpn., 65, 1255.
  • Reference20. Akimoto K., Ando T. 2004. Effects of Trigonal Warping on Perfect Channel in Metallic Carbon Nanotubes, J. Phys. Soc. Jpn., 73, 2194.
  • Reference21. Schoenlein R. W., Chattopadhyay S., Chong H. H., Glover T. E., Heimann P. A., Shank C. V., Zholents A. A., Zolotorev M. S. 2000. Generation of Femtosecond Pulses of Synchrotron Radiation, Phys. Rev., 287, 2237.
  • Reference22. McCann E., Fal'ko V. I. 2006. Landau-Level Degeneracy and Quantum Hall Effect in a Graphite Bilayer, Phys. Rev. Lett., 96, 086805.
  • Reference23. McCann E., Koshino M. 2009. Trigonal warping and Berry’s phase Nπ in ABC-stacked multilayer graphene, Phys. Rev. B, 80, 165409.
  • Reference24. McCann E., Smirnov D., Bao W., Jing L., Velasco J., Lee Y., Liu G., Tran D., Standley B., Aykol M., Cronin S. B., Koshino M., Bockrath M., Lau C. N. 2011. Stacking-dependent band gap and quantum transport in trilayer graphene, Nat. Phys. 7, 948.

Circularly Polarized Light on Graphene with Trigonal Warping

Yıl 2020, , 697 - 702, 15.06.2020
https://doi.org/10.17798/bitlisfen.592947

Öz

In this article, we theoretically investigate
the electronic band structure of monolayer graphene in the presence of trigonal
warping and photo-induced effects. The total Hamiltonian of the system has been
written and the optical absorption of circularly polarized light for the high
frequency regime have been modelled by the Haldane interaction. The relation
between trigonal warp aspects and optical absorption of circularly polarized
light has been overviewed through the model. The main aim of this investigation
is to assess the effects of trigonal warp and photo induced-effects which show
for the high frequency regime that the edge states can be controlled by tuning
the amplitude of the light. Additionally, theoretically analyzed the versatile
electronic properties of trigonal warped-graphene under circularly polarized
light. We conclude that photo-induced effect which induced circularly polarized
light leads to the opening of energy gap between valance and conduction bands
while raises electron-hole asymmetry in the system. 

Kaynakça

  • Reference1. Wallace P. R. 1947. The Band Theory of Graphite, Phys. Rev., 71, 622.
  • Reference2. Semenof G. W. 1984. Condensed-Matter Simulation of a Three-Dimensional Anomaly, Phys. Rev. Lett., 53, 2449.
  • Reference3. Geim A. K., Novoselov K. S. 2007. The rise of graphene, Nat. Mater., 6, 183.
  • Reference4. Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K. 2009. The electronic properties of graphene, Rev. Mod. Phys., 81, 109.
  • Reference5. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A. 2005. Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197.
  • Reference6. Zhang Y., Tan Y.-W., Stormer H. L., Kim P. 2005. Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, 438, 201.
  • Reference7. Cserti J., Csord´as A., D´avid G. 2007. Role of the Trigonal Warping on the Minimal Conductivity of Bilayer Graphene, Phys. Rev. Lett., 99, 066802.Reference8. Moghaddam A. G., Zareyan M. 2009. Anisotropic minimal conductivity of graphene bilayers, Phys. Rev. B, 79, 073401.
  • Reference9. Koshino M., Ando T. 2006. Transport in bilayer graphene: Calculations within a self-consistent Born approximation, Phys. Rev. B, 73, 245403. Reference10. Snyman I., Beenakker C. W. J. 2007. Ballistic transmission through a graphene bilayer, Phys. Rev. B, 75, 045322.
  • Reference11. Peres N. M. R. 2010. Colloquium: The transport properties of graphene: An introduction, Rev. Mod. Phys., 82, 2673.
  • Reference12. Das Sarma S., Adam S., Hwang E. H., Rossi E. 2011. Electronic transport in two-dimensional graphene, Rev. Mod. Phys., 83, 407.
  • Reference13. Haldane F. D. M. 1988. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly", Phys. Rev. Lett., 61, 2015.
  • Reference14. Ryu S., Mudry C., Hou C-Y, Chamon C. 2009. Masses in graphenelike two-dimensional electronic systems: Topological defects in order parameters and their fractional exchange statistics, Phys. Rev. B 105, 205319.
  • Reference15. Ezawa M. 2015. Photo-Induced Topological Superconductor in Silicene, Germanene, and Stanene, J. Supercond. Nov. Magn., 28, 1249.
  • Reference16. Ezawa M. 2013. Single Dirac-cone state and quantum Hall effects in a honeycomb structure, EPLA. 104, 27006.
  • Reference17. Ezawa M. 2013. Photoinduced Topological Phase Transition and a Single Dirac-Cone State in Silicene, Phys. Rev. Lett. 110, 026603.
  • Reference18. Kitagawa T., Oka T., Brataas A., Fu L.,. Demler E. 2011. Transport properties of nonequilibrium systems under the application of light: Photoinduced quantum Hall insulators without Landau levels, Phys. Rev. B 84, 235108.
  • Reference19. Ajiki H., Ando T. 1996. Energy Bands of Carbon Nanotubes in Magnetic Fields, J. Phys. Soc. Jpn., 65, 1255.
  • Reference20. Akimoto K., Ando T. 2004. Effects of Trigonal Warping on Perfect Channel in Metallic Carbon Nanotubes, J. Phys. Soc. Jpn., 73, 2194.
  • Reference21. Schoenlein R. W., Chattopadhyay S., Chong H. H., Glover T. E., Heimann P. A., Shank C. V., Zholents A. A., Zolotorev M. S. 2000. Generation of Femtosecond Pulses of Synchrotron Radiation, Phys. Rev., 287, 2237.
  • Reference22. McCann E., Fal'ko V. I. 2006. Landau-Level Degeneracy and Quantum Hall Effect in a Graphite Bilayer, Phys. Rev. Lett., 96, 086805.
  • Reference23. McCann E., Koshino M. 2009. Trigonal warping and Berry’s phase Nπ in ABC-stacked multilayer graphene, Phys. Rev. B, 80, 165409.
  • Reference24. McCann E., Smirnov D., Bao W., Jing L., Velasco J., Lee Y., Liu G., Tran D., Standley B., Aykol M., Cronin S. B., Koshino M., Bockrath M., Lau C. N. 2011. Stacking-dependent band gap and quantum transport in trilayer graphene, Nat. Phys. 7, 948.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Defne Akay 0000-0001-8990-007X

Yayımlanma Tarihi 15 Haziran 2020
Gönderilme Tarihi 17 Temmuz 2019
Kabul Tarihi 5 Aralık 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

IEEE D. Akay, “Circularly Polarized Light on Graphene with Trigonal Warping”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 9, sy. 2, ss. 697–702, 2020, doi: 10.17798/bitlisfen.592947.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr