BibTex RIS Kaynak Göster

-

Yıl 2013, Cilt: 2 Sayı: 2, 204 - 220, 01.12.2013

Öz

Today, a large part of energy are obtained from fossil fuels such as coal, petroleum and natural gas. However, the amount of fossil fuel has been declining steadily due to increased energy consumption in parallel with world population and its needs. Also, gases emitted from fosil fuels causes environmental problems such as acid rains, climate change, increasing greenhouse gases. Therefore, the interest on renewable energy sources like solar, wind and biomass has increased. Considering the potential of increasing oil prices and raw material potential, bioethanol derived from biomass can be used as both more economical and sustainable energy source. Type of biomass for production of bioethanol is variable depending on factors such as collection, storage, pre-treatment, hydrolysis and fermentation

Kaynakça

  • Soetaert W., Vandamme E. J. 2008. Biofuels, John Wiley & Sons, 297s. Wiltshire.
  • Ayres R. U., Walter J. 1991. The Greenhouse Effect: Damages, Costs and Abatement, Environmental And Resource Economics, 1: 237-270.
  • Gençoğlu M.T. Yenilenebilir Enerji Kaynaklarının Türkiye Açısından Önemi, http: //perweb.firat.edu.tr/personel/yayinlar/fua_612/612_502.pdf (Erişim tarihi: 17.09.2013).
  • Lal R. 2004. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security, Science 304: 1623-1627.
  • Eissen M, Metzger J.O., Schmidt E., Schneidewind U. 2002. 10 Years After Rio-Concepts on The Contribution of Chemistry to a Sustainable Development, Angew Chem Int Ed Eng, 41: 415-436.
  • Hill J. Nelson E., Tilman D., Polasky S., Affiliations A. 2006. Environmental, Economic, and Energetic Costs and Benefits of Biodiesel and Ethanol Biofuels, PNAS, 103(30): 11206-11210.
  • Najafi G., Ghobadian B., Tavakoli T., Yusaf T. 2009. Potential of Bioethanol Production from Agriculturel Wastes in İran, Renewable and Sustainable Enerjy Reviews, 13: 1418-1427.
  • Hahn-Hägerdal B., Galbe M., Gorwa-Grauslund M. F., Lidén G., Zacchi G. 2006. Bio-Ethanol- The Fuel of Tomorrow From the Residues of Today, Trends in Biotechnology, 24(10): 549-556.
  • Balat M., Balat H., Öz C. 2008. Progress in Bioethanol Processing, Progress in Energy and Combustion Science, 34: 551-573.
  • Balat M., Balat H. 2009. Recent Trends in Global Production Utilization of Bio-Ethanol Fuel, Applied Energy, 86: 2273-2282.
  • Lin Y., Tanaka S. 2006. Etanol Fermentation from Biomass Resource: Current State and Prospect, Appl. Microbiol. Biotechnol, 69: 627-642.
  • Wang M., Saricks C., Santini D. 1999. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions, Argonne National Laboratory, Argonne, 1-32.
  • Chen H., Qiu W. 2010. Key Technologies for Bioethanol Production from Lignocellulose, Biotechnology Advances, 28: 556-562.
  • Melikoğlu M., Albostan A. 2011. Türkiye’de Biyoetanol Üretimi Ve Potansiyeli, Gazi
  • Üniversitesi Mühendislik- Mim
  • arlık Fakültesi Dergisi, 26(1): 151-160.
  • Claassen P. A. M., van Lier J. B., Contreras A. M. P., van Niel E.W.J., Sijtsma L., Stams A.J.M., de Vries S.S., Weusthuis R.A. 1999. Utilisation of Biomass for The Supply of Energy Carriers, Appl Microbiol Biotechnol, 52: 741-755.
  • Acaroğlu M. 2008. Türkiye’de Biyokütle, Biyoetanol ve Biyomotorin Kaynakları ve Biyoyakıt
  • Enerjisinin Geleceği, V Ulusal Temiz Enerji Sempozyumu, pp 351-362. 17-19 Aralık, İstanbul.
  • Rosilla-Calle F., Cortez L. A. B. 1998. Towards Proalcool II- A Review of the Brezillian Bioethanol programme, Biomass and Bioenergy, 14(2): 115-124.
  • Mosier N., Wyman C., Dale B., Elander R., Lee Y.Y., Holtzapple M., Ladisch M. 2005. Features Of Promising Technologies for Pretreatment Of Lignocellulosic Biomass, Bioresource Technology, 96: 673-686.
  • Ar F. F. 2012. Biyoetanol Kullanım Zorunluluğunun Türk Ekonomisinde Yaratacağı Etkiler, Türkiye 12. Enerji Kongresi, Kasım 14-16, Ankara.
  • Polat F., Aksu T. 2009. Yenilenebilir Enerji Kaynağından Potansiyel Yem Kaynağına Giden Yol: Damıtık Tahıllar I- Damıtık Tahılların Elde Edilişi ve Nitelikleri, Atatürk Üniversitesi Vet Bil Derg, 4(3): 197-208.
  • Kamm B., Kamm M. 2004. “Principles of Biorefineries”, Appl. Microbiol. Biotechnol., 64: 137
  • The Need Project. 2008. Biomass, Elementary Energy İnfobook, 10-11.
  • Overend R. P.1989. Biomass for Energy, Energy Studies Review, 1(1): 16-27.
  • Ditl P., Skrivanek K. 2008. The Limits of Renewable Energy Sources in The Czech Republic” Czasopismo Techniczne 5: 57-66.
  • Çaylak B., Vardar Sukan F. 1998. Comparison of Different Production Process for Bioethanol, Turk J Chem, 22: 351-359.
  • Bilgin D., Kıymaz T., Çağatay S. 2009. Dünya Biyo-Enerji Piyasalarında Hedefler ve Dünya
  • Gıda Fiyatları Üzerine Olası Etkileri, Anadolu Uluslararası İktisat Kongresi, Haziran 17-19, Eskişehir.
  • Jönsson L. J., Alriksson B., Nilvebrant N. O. 2013. Bioconversion of Lignocellulose: Inhibitors and Detoxification, 6(16): 1-10.
  • Balat M. 2010. Production of Bioethanol from Lignocellulosic Materials Via the Biochemical Pathway: A Review”, Energy Conversion and Management, http://www.sciencedirect.com/science/article/pii/S0196890410003791 17.09.2013). (Erişim tarihi:
  • Conde-Mejía C., Jiménez-Gutiérrez A., El-Halwagi M. 2012. A Comparison of Pretreatment Methods for Bioethanol Production From Lignocellulosic Materials, Process Safety and Environmental Protection, 90: 189-202.
  • Adıgüzel A. O. 2013. Lignoselülozik Materyallerden Biyoetanol Üretimi İçin Kullanılan Ön
  • Muamele ve Hidroliz Yöntemleri, SAÜ. Fen Bil. Der., 17(3): 381-397.
  • Gray K. A., Zhao L., Eptage M. 2006. Bioethanol, Current Opinion in Chemical Biology, 10:141–146.
  • Grba S., Tomas V. S.,Stanzer D.,Vahèiæ N., Škrlin A. 2002. Selection of Yeast Strain Kluyveromyces marxianus for Alcohol and Biomass Production on Whey, Chem. Biochem. Eng. Q., 16 (1): 13–16.
  • Patle S., Lal B. 2007. Ethanol Production From Hydrolysed Agricultural Wastes Using Mixed Culture of Zymomonas mobilis and Candida tropicalis, Biotechnol Lett, 29: 1838-1843.
  • Junchen L., Irfan M., Lin F. 2012. Bioconversion of agricultural waste to ethanol: A potential source of energy, Archives Des Sciences, 65(12): 626-642.
  • Viikari L, Alapuranen M., Puranen T., Vehmaanperä J., Siika-aho M. 2007. Thermostable Enzymes in Lignocellulose Hydrolysis, Adv Biochem Engin/Biotechnol, 108: 121-145.
  • Linoj K. N. V., Dhavala P., Goswami A., Maithel S. 2006. Liquid Biofuels in South Asia: Resources and Technologies, Asian Biotechnol Develop Rev, 8: 31-49.
  • Renouf M. A., Wegener M. K., Nielsen N. K. 2008. “An Environmental Life Cycle Assessment Comparing Australian Sugarcane with US Corn and UK Sugar Beet as Producers of Sugars for Fermentation, Biomass And Bioenergy, 32: 1144-1155.
  • Almadores A., Hadi M. R. 2009. Production of Bioethanol from Sweet Sorgum: Areview, African Journal of Agricultural Research, 4(9): 772-780.
  • Bennet A. S., Anex R. P. 2009. Production, Transportation and Milling Costs of Sweet Sorghum as a Feedstock for Centralized Bioethanol Production in the Upper Midwest, Bioresource Technology, 100: 1595-16047.
  • Ölçer H., Akın B. 2008. Starch: Biosynthesis, Granule Structure and Genetic Modifications, Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 16: 1-12.
  • Roby J. F. 1998. Essentials of Carbohydrate Chemistry, Springer, 399s. New York.
  • Yamada R., Bito Y., Adachi T., Tanaka T., Ogino C., Fukuda H., Kondo A. 2009. Efficient Production of Ethanol from Raw Starch by A Mated Diploid Saccharomyces Cerevisiae with İntegrated α-Amylase and Glucoamylase Genes, Enzyme and Microbial Technology, 44: 344
  • Van der Maarel M. J. E. C., van der Veen B., Uitdehaag J. C. M., Leemhuis H., Dijkhuizen L. 2002. Properties and Applications of Starch-Converting Enzymes Of The α-Amylase Family, Journal of Biotechnology, 94: 137-155.
  • Mabee W. E. Saddler J. N. 2010. Bioethanol from Lignocellulosics: Status and Perspectives in Canada, Bioresource Technology, 101: 4806-4813.
  • Roehr M. 2001. The Biotechnology Of Ethanol, Wiley-VCH, 232s. Weinheim.
  • Boettger A., Roesner R., Pieper H. J. 1995. Untersuchungen zur Inhibierung von Pektinesterase durch Tenside und Gerbstoffe bei der industriellen Alkoholgewinnunaus Kartoffeln, Proc, DECHEMA- Jahrestagungen, 1: 324-325.
  • Xu G.-W. Gross D. C. 1986. Selection of Fluorescent Antagonistic to Erwinia carotovora and Suppressive of Potato Seed Piece Decay, Phytopathology, 76(4): 414-422.
  • Atallah Z. K., Stevenson V. R. 2008. A Methodology to Detect and Quantify Five Pathogens Causing Potato Tuber Decay Using Real-Time Quantitative Polymerase Chain Reaction, Phytopathology, 96(9): 1037-1045.
  • Morris P. C., Bryce J. H. 2000. Cereal Biotechnology, CRC Press, 1-16, Cambridge.
  • Zhou Z., Robards K., Helliwell S., Blanchard C. 2002. Composition and Functional Properties of Rice, International Journal of Food Science and Technology, 37: 849-868.
  • Doxastakis G., Zafiriadis I., Irakli M., Marlani H., Tananaki C. 2002. Lupin, Soya and Triticale Addition to Wheat Flour Doughs and Their Effect on Rheological Properties, Food Chemistry, 77: 219–227.
  • Meral R., Saydan Kamberoğlu G. 2012. Tahıllardan Etanol Üretimi, Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2(3): 61-68.
  • Angenent L. T. 2007. Energy Biotechnology: Beyond the General Lignocellulose-to-Ethanol Pathway”, Current Opinion in Biotechnology, 18: 191-192.
  • Özcan M. 2009. Modern Dünyanın Vazgeçilmez Bitkisi Mısır: Genetiği Değiştirilmiş (Transgenik) Mısırın Tarımsal Üretime Katkısı, Türk Bilimsel Derlemeler Dergisi, 2(2): 01-34.
  • Altan A., Yağcı S., Maskan M., Göğüş F. 2006. Arpanın Ürün Bazında Degerlendirilmesi, Türkiye 9. Gıda Kongresi Bildir Özetleri Kitabı, pp496-498, 24-26 Mayıs, Bolu.
  • Valenzuela H., Smith j. 2002. Barley, Sustainable Agriculture Green Manure Crops, 3: 1-3.
  • Yılmaz N. 2007. Arpa, T.E.A.E-Bakış, 9(2): 1-4.
  • Lin Y., Tanaka S. 2006. Ethanol Fermentation from Biomass Resources: Current State and Prospects, Appl. Microbiol. Biotechnol., 69: 627-642.
  • Meryandini A., Melani V., Sunarti T. C. 2011. Addition of Cellulolytic Bacteria to İmproved the Quality of Fermented Cassava Flour, African Journal of Food Science and Technology, 2(2): 030- 035.
  • Polycarpou P. 2009. Bioethanol Production from Asphodelus aestivus, Renewable Energy, 34: 2525-2527.
  • Sawidis T., Kalyva S., Delivopoulos S. 2005. The Root-Tuber Anatomy of Asphodelus aestivus, Flora, 200: 332-338.
  • Kaya M., Kammesheidt L., Weidelt H.-J. 2002. The Forest Garden System of Saparua İsland, Central Maluku, Indonesia and İts Role in Maintaining Tree Species Diversity, Agroforestry Systems, 54: 225-234.
  • Kuroda K.-I., Ozawa T., Ueno T. 2001. Characterization of Sago Palm (Metroxylon sagu) Lignin by Analytical Pyrolysis, J Agric Food Chem, 49: 1840-184.
  • Taherzadeh M. J., Karimi K. 2007. Acid-Based Hydrolysis Processes for Ethanol from Lignocellulosic Materials: A Review”, Bioresources, 2(3): 472-499.
  • Sluiter J. B., Ruız R. O., Scarlata C. J., Sluiter A. D., Templeton D. V. 2010. Compositional Analysis of Lignocellulosic Feedstocks. 1. Review and Description of Methods, J Agric Food Chem, 58: 9043-9053.
  • Kim S., Dale B. E. 2004. Global Potential Bioethanol Production from Wasted Crops and Crop Residues, Biomass and Bioenergy, 26: 361-375.
  • Tuomela M., Vikman M., Hatakka A., Itävaara M. 2000. Biodegradation of Lignin in A Compost Environment: A Review, Bioresource Technology, 72: 169-183.
  • Winger M., Christen M., van Gunsteren V. F. 2009. On the Conformational Properties of Amylose and Cellulose Oligomers in Solution, International Journal of Carbohydrate Chemistry,1-8.
  • Tolonen L. K., Zuckerstätter G., Penttilä P. A., Milacher V., Habicht V., Serimaa R., Kruse A., Sixta H. 2011. Structural Changes in Microcrystalline Cellulose in Subcritical Water Treatment, Biomacromolecules, 12: 2544-2551.
  • O'sullıvan A. C. 1997. Cellulose: The Structure Slowly Unravels”, Cellulose, 4: 173-207.
  • Lee K.Y., Quero F., Blaker J. J., Hill C. S. A., Eichhorn S. J., Bismarck A. 2011. Surface Only Modification of Bacterial Cellulose Nanofibres with Organic Acids, Cellulose 18: 595-603.
  • Fahma F., Iwamoto S., Hori N., Iwata T., Takemura A. 2011. Effect of Pre-Acid-Hydrolysis Treatment on Morphology and Properties of Cellulose Nanowhiskers from Coconut Husk, Cellulose, 18: 443-450.
  • Morohoshi N. 1991. Chemical Characterization of Wood and Its Components, Wood And Cellulosic Chemistry, 331-392.
  • Zhang Y. H. P. 2008. Reviving The Carbohydrate Economy Via Multi-Product Lignocellulose Bioreffineries, J Ind Microbiol Biotechnol, 35: 367-375.
  • Mosier N., Wyman C., Dale B., Elander R., Lee Y. Y., Holtzapple M., Ladisch M. 2005. Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass, Bioresource Technology, 96: 673-686.
  • McMillan J. D. 1993. Pretreatment Of Lignocellulosic Biomass - Himmel, M. E., Baker, J. O., Overend, R. P., “Enzymatic Conversion Of Biomass For Fuel Production”, American Chemical Society, s292-323, Washington.
  • Aspinall G. O. 1980. Chemistry of Cell Wall Polysaccharides, - Preiss, J., “The Biochemistry Of Plants (A Comprehensive Treatise), Vol 3. Carbohydrates: Structure And Function”, Academic Press, 473–500, New York.
  • Kormelink F. J. M., Voragen A. G. J. 1993. Degradation of Different [(Glucurono)Arabino] Xylans by A Combination of Purified Xylan-Degrading Enzymes, Appl Microbiol Biotechnol, 38: 688-695.
  • Shibuya N., Iwasaki T. 1985. Structural Features of Rice Bran Hemicellulose, Phytochemistry, 24: 285-289..
  • Saha B. C., Bothast R. J. 1999. Pretreatment and Enzymatic Saccharification of Corn Fiber.”, Appl. Biochem. Biotechnol. 76: 65-77.
  • Dominguez J. M., Gong S. G., Tsao G. T. 1996. Pretreatment of Sugar Cane Bagasse Hemicellulose Hydrolyzate for Xylitol Production by Yeast, Appl Biochem Biotechnol, 5(58): 49-56.
  • Saha B. C. 2003. Hemicellulose Bioconversion, J. Ind Microbiol Biotechnol, 30: 279-291.
  • Demirbaş A. 2009. “Biofuels, Securing the Planet’s Future Energy Needs”, Springer Verlag
  • London Limited, ISBN 978-1-84882-010-4.
  • Kuru A. 2009. Thermofilik Streptomyces Sp.NT508 Suşundan İzole Edilen Peroksidaz ve Endoksilanaz Enzimlerinin Karakterizasyonu, Mersin Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 142s, Mersin.
  • Kurtuluş M. 2010. Lignoselülozik Materyallerden Termokatalitik İşlemle Suda Çözündürülen
  • Polisakkaritlerin Moleküler Yapılarının İncelenmesi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 91s, Adana.
  • Hofrichter M. 2002. Review: Lignin Conversion by Manganese Peroxidase (MnP), Enzyme and Microbial Technology, 30: 454-466.
  • Cosgrove D. J. 2005. Growth of The Plant Cell Wall, Nature Reviews Molecular Cell Biology, 6: 850-861.
  • Adıgüzel A. O. 2012. Kimyasal Ön-İşlemlerden Geçirilmiş Lignoselülozik Atıkların Streptomyces Sp.
  • AOA40 Enzimleriyle Şeker Şurubuna Dönüştürülmesi, Mersin Üniversitesi Fen
  • Bilimleri Enstitüsü, Yüksek Lisans Tezi, 158s, Mersin.
  • Bugg T. 2004. Introduction to Enzyme and Coenzyme Chemistry, Blackwell Publishing Ltd, 292s, Great Britain,
  • Ek M., Gellerstedt G., Henriksson G. 2009. Wood Chemistry and Wood Biotechnology, Walter de Gruyter GmbH & Co. KG, 308s, Göttingen.
  • Erbil N., Coruk G., Dığrak M. 2006. Kahraman Maraş Civarındaki Ekstrem Ortamlardan İzole Edilen Bakterilerde Lignin Biyodegredasyonunun Araştırılması, Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 18(4): 485-492.
  • Das A., Paul T., Jana A., Halder S. K., Ghosh K., Maity C., Mohapatra P. K. D., Pati B. R., Mondal K. C. 2013. Bioconversion of Rice Straw to Sugar Using Multizyme Complex of Fungal Origin And Subsequent Production of Bioethanol by Mixed Fermentation of Saccharomyces cerevisiae MTCC 173 and Zymomonas mobilis MTCC 2428, Industrial Crops and Products 46: 217-225.
  • Saha B. C., Yoshida T., Cotta M. A., Sonomoto K. 2013. Hydrothermal Pretreatment and Enzymatic Saccharification of Corn Stover for Efficient Ethanol Production, Industrial Crops and Products 44: 367-372.
  • Cao W., Sun C., Liu R., Yin R., Wu X. 2012. Comparison of the Effects of Five Pretreatment Methods On Enhancing the Enzymatic Digestibility and Ethanol Production From Sweet Sorghum Bagasse, Bioresource Technology, 111: 215-221.
  • Jung Y. H., Kim I. J., Kim H. K., Kim K. H. 2013. Dilute Acid Pretreatment of Lignocellulose for Whole Slurry Ethanol Fermentation, Bioresource Technology, 132: 109-114
  • Singh A., Nigam P. S., Murphy J. D. 2011. Renewable Fuels From Algae: An Answer to Debatable Land Based Fuels, Bioresource Technology, 102: 10-16.
  • Gouveia V., Oliveira A. C. Microalgae as A Raw Material for Biofuels Production”, J Ind Microbiol Biotechnol, 36: 269-274.
  • Scholz M. J., Riley M. R., Cuello J. L. 2013. Acid Hydrolysis and Fermentation of Microalgal Starches to Ethanol by the Yeast Saccharomyces cerevisiae, Biomass and Bioenergy, 48:58-65.
  • Harun R., Danquah M. K. 2011. Influence of Acid Pretreatment on Microalgal Biomass for Bioethanol Production, Process Biochemistry, 46(1): 304-309.

Biyoetanolün Genel Özellikleri ve Üretimi İçin Gerekli Hammadde Kaynakları

Yıl 2013, Cilt: 2 Sayı: 2, 204 - 220, 01.12.2013

Öz

Günümüzde, enerjinin büyük bir bölümü petrol, kömür ve doğal gaz gibi fosil yakıtlardan elde edilmektedir. Fakat dünya nüfusu ve ihtiyaçlarına paralel olarak artan enerji tüketiminden dolayı fosil yakıt miktarı giderek azalmaktadır. Ayrıca, fosil yakıtlardan salınan gazlar asit yağmurları, iklim değişikliği, sera gazı emisyonunda artış gibi çevresel problemlere de sebep olmaktadır. Bundan dolayı, güneş, rüzgâr, biyokütle gibi yenilenebilir enerji kaynaklarına olan ilgi artmıştır. Biyokütleden elde edilen biyoetanol ise özellikle artan petrol fiyatları ve hammadde potansiyeli göz önünde bulundurulduğunda hem daha ekonomik hem de sürdürülebilir enerji kaynağı olarak kullanılabilir. Biyoetanol üretimi için gerekli biyokütle türü toplama, depolama, ön- muamele, hidroliz, fermentasyon gibi etmenlere bağlı olarak değişmektedir.

Kaynakça

  • Soetaert W., Vandamme E. J. 2008. Biofuels, John Wiley & Sons, 297s. Wiltshire.
  • Ayres R. U., Walter J. 1991. The Greenhouse Effect: Damages, Costs and Abatement, Environmental And Resource Economics, 1: 237-270.
  • Gençoğlu M.T. Yenilenebilir Enerji Kaynaklarının Türkiye Açısından Önemi, http: //perweb.firat.edu.tr/personel/yayinlar/fua_612/612_502.pdf (Erişim tarihi: 17.09.2013).
  • Lal R. 2004. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security, Science 304: 1623-1627.
  • Eissen M, Metzger J.O., Schmidt E., Schneidewind U. 2002. 10 Years After Rio-Concepts on The Contribution of Chemistry to a Sustainable Development, Angew Chem Int Ed Eng, 41: 415-436.
  • Hill J. Nelson E., Tilman D., Polasky S., Affiliations A. 2006. Environmental, Economic, and Energetic Costs and Benefits of Biodiesel and Ethanol Biofuels, PNAS, 103(30): 11206-11210.
  • Najafi G., Ghobadian B., Tavakoli T., Yusaf T. 2009. Potential of Bioethanol Production from Agriculturel Wastes in İran, Renewable and Sustainable Enerjy Reviews, 13: 1418-1427.
  • Hahn-Hägerdal B., Galbe M., Gorwa-Grauslund M. F., Lidén G., Zacchi G. 2006. Bio-Ethanol- The Fuel of Tomorrow From the Residues of Today, Trends in Biotechnology, 24(10): 549-556.
  • Balat M., Balat H., Öz C. 2008. Progress in Bioethanol Processing, Progress in Energy and Combustion Science, 34: 551-573.
  • Balat M., Balat H. 2009. Recent Trends in Global Production Utilization of Bio-Ethanol Fuel, Applied Energy, 86: 2273-2282.
  • Lin Y., Tanaka S. 2006. Etanol Fermentation from Biomass Resource: Current State and Prospect, Appl. Microbiol. Biotechnol, 69: 627-642.
  • Wang M., Saricks C., Santini D. 1999. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions, Argonne National Laboratory, Argonne, 1-32.
  • Chen H., Qiu W. 2010. Key Technologies for Bioethanol Production from Lignocellulose, Biotechnology Advances, 28: 556-562.
  • Melikoğlu M., Albostan A. 2011. Türkiye’de Biyoetanol Üretimi Ve Potansiyeli, Gazi
  • Üniversitesi Mühendislik- Mim
  • arlık Fakültesi Dergisi, 26(1): 151-160.
  • Claassen P. A. M., van Lier J. B., Contreras A. M. P., van Niel E.W.J., Sijtsma L., Stams A.J.M., de Vries S.S., Weusthuis R.A. 1999. Utilisation of Biomass for The Supply of Energy Carriers, Appl Microbiol Biotechnol, 52: 741-755.
  • Acaroğlu M. 2008. Türkiye’de Biyokütle, Biyoetanol ve Biyomotorin Kaynakları ve Biyoyakıt
  • Enerjisinin Geleceği, V Ulusal Temiz Enerji Sempozyumu, pp 351-362. 17-19 Aralık, İstanbul.
  • Rosilla-Calle F., Cortez L. A. B. 1998. Towards Proalcool II- A Review of the Brezillian Bioethanol programme, Biomass and Bioenergy, 14(2): 115-124.
  • Mosier N., Wyman C., Dale B., Elander R., Lee Y.Y., Holtzapple M., Ladisch M. 2005. Features Of Promising Technologies for Pretreatment Of Lignocellulosic Biomass, Bioresource Technology, 96: 673-686.
  • Ar F. F. 2012. Biyoetanol Kullanım Zorunluluğunun Türk Ekonomisinde Yaratacağı Etkiler, Türkiye 12. Enerji Kongresi, Kasım 14-16, Ankara.
  • Polat F., Aksu T. 2009. Yenilenebilir Enerji Kaynağından Potansiyel Yem Kaynağına Giden Yol: Damıtık Tahıllar I- Damıtık Tahılların Elde Edilişi ve Nitelikleri, Atatürk Üniversitesi Vet Bil Derg, 4(3): 197-208.
  • Kamm B., Kamm M. 2004. “Principles of Biorefineries”, Appl. Microbiol. Biotechnol., 64: 137
  • The Need Project. 2008. Biomass, Elementary Energy İnfobook, 10-11.
  • Overend R. P.1989. Biomass for Energy, Energy Studies Review, 1(1): 16-27.
  • Ditl P., Skrivanek K. 2008. The Limits of Renewable Energy Sources in The Czech Republic” Czasopismo Techniczne 5: 57-66.
  • Çaylak B., Vardar Sukan F. 1998. Comparison of Different Production Process for Bioethanol, Turk J Chem, 22: 351-359.
  • Bilgin D., Kıymaz T., Çağatay S. 2009. Dünya Biyo-Enerji Piyasalarında Hedefler ve Dünya
  • Gıda Fiyatları Üzerine Olası Etkileri, Anadolu Uluslararası İktisat Kongresi, Haziran 17-19, Eskişehir.
  • Jönsson L. J., Alriksson B., Nilvebrant N. O. 2013. Bioconversion of Lignocellulose: Inhibitors and Detoxification, 6(16): 1-10.
  • Balat M. 2010. Production of Bioethanol from Lignocellulosic Materials Via the Biochemical Pathway: A Review”, Energy Conversion and Management, http://www.sciencedirect.com/science/article/pii/S0196890410003791 17.09.2013). (Erişim tarihi:
  • Conde-Mejía C., Jiménez-Gutiérrez A., El-Halwagi M. 2012. A Comparison of Pretreatment Methods for Bioethanol Production From Lignocellulosic Materials, Process Safety and Environmental Protection, 90: 189-202.
  • Adıgüzel A. O. 2013. Lignoselülozik Materyallerden Biyoetanol Üretimi İçin Kullanılan Ön
  • Muamele ve Hidroliz Yöntemleri, SAÜ. Fen Bil. Der., 17(3): 381-397.
  • Gray K. A., Zhao L., Eptage M. 2006. Bioethanol, Current Opinion in Chemical Biology, 10:141–146.
  • Grba S., Tomas V. S.,Stanzer D.,Vahèiæ N., Škrlin A. 2002. Selection of Yeast Strain Kluyveromyces marxianus for Alcohol and Biomass Production on Whey, Chem. Biochem. Eng. Q., 16 (1): 13–16.
  • Patle S., Lal B. 2007. Ethanol Production From Hydrolysed Agricultural Wastes Using Mixed Culture of Zymomonas mobilis and Candida tropicalis, Biotechnol Lett, 29: 1838-1843.
  • Junchen L., Irfan M., Lin F. 2012. Bioconversion of agricultural waste to ethanol: A potential source of energy, Archives Des Sciences, 65(12): 626-642.
  • Viikari L, Alapuranen M., Puranen T., Vehmaanperä J., Siika-aho M. 2007. Thermostable Enzymes in Lignocellulose Hydrolysis, Adv Biochem Engin/Biotechnol, 108: 121-145.
  • Linoj K. N. V., Dhavala P., Goswami A., Maithel S. 2006. Liquid Biofuels in South Asia: Resources and Technologies, Asian Biotechnol Develop Rev, 8: 31-49.
  • Renouf M. A., Wegener M. K., Nielsen N. K. 2008. “An Environmental Life Cycle Assessment Comparing Australian Sugarcane with US Corn and UK Sugar Beet as Producers of Sugars for Fermentation, Biomass And Bioenergy, 32: 1144-1155.
  • Almadores A., Hadi M. R. 2009. Production of Bioethanol from Sweet Sorgum: Areview, African Journal of Agricultural Research, 4(9): 772-780.
  • Bennet A. S., Anex R. P. 2009. Production, Transportation and Milling Costs of Sweet Sorghum as a Feedstock for Centralized Bioethanol Production in the Upper Midwest, Bioresource Technology, 100: 1595-16047.
  • Ölçer H., Akın B. 2008. Starch: Biosynthesis, Granule Structure and Genetic Modifications, Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 16: 1-12.
  • Roby J. F. 1998. Essentials of Carbohydrate Chemistry, Springer, 399s. New York.
  • Yamada R., Bito Y., Adachi T., Tanaka T., Ogino C., Fukuda H., Kondo A. 2009. Efficient Production of Ethanol from Raw Starch by A Mated Diploid Saccharomyces Cerevisiae with İntegrated α-Amylase and Glucoamylase Genes, Enzyme and Microbial Technology, 44: 344
  • Van der Maarel M. J. E. C., van der Veen B., Uitdehaag J. C. M., Leemhuis H., Dijkhuizen L. 2002. Properties and Applications of Starch-Converting Enzymes Of The α-Amylase Family, Journal of Biotechnology, 94: 137-155.
  • Mabee W. E. Saddler J. N. 2010. Bioethanol from Lignocellulosics: Status and Perspectives in Canada, Bioresource Technology, 101: 4806-4813.
  • Roehr M. 2001. The Biotechnology Of Ethanol, Wiley-VCH, 232s. Weinheim.
  • Boettger A., Roesner R., Pieper H. J. 1995. Untersuchungen zur Inhibierung von Pektinesterase durch Tenside und Gerbstoffe bei der industriellen Alkoholgewinnunaus Kartoffeln, Proc, DECHEMA- Jahrestagungen, 1: 324-325.
  • Xu G.-W. Gross D. C. 1986. Selection of Fluorescent Antagonistic to Erwinia carotovora and Suppressive of Potato Seed Piece Decay, Phytopathology, 76(4): 414-422.
  • Atallah Z. K., Stevenson V. R. 2008. A Methodology to Detect and Quantify Five Pathogens Causing Potato Tuber Decay Using Real-Time Quantitative Polymerase Chain Reaction, Phytopathology, 96(9): 1037-1045.
  • Morris P. C., Bryce J. H. 2000. Cereal Biotechnology, CRC Press, 1-16, Cambridge.
  • Zhou Z., Robards K., Helliwell S., Blanchard C. 2002. Composition and Functional Properties of Rice, International Journal of Food Science and Technology, 37: 849-868.
  • Doxastakis G., Zafiriadis I., Irakli M., Marlani H., Tananaki C. 2002. Lupin, Soya and Triticale Addition to Wheat Flour Doughs and Their Effect on Rheological Properties, Food Chemistry, 77: 219–227.
  • Meral R., Saydan Kamberoğlu G. 2012. Tahıllardan Etanol Üretimi, Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2(3): 61-68.
  • Angenent L. T. 2007. Energy Biotechnology: Beyond the General Lignocellulose-to-Ethanol Pathway”, Current Opinion in Biotechnology, 18: 191-192.
  • Özcan M. 2009. Modern Dünyanın Vazgeçilmez Bitkisi Mısır: Genetiği Değiştirilmiş (Transgenik) Mısırın Tarımsal Üretime Katkısı, Türk Bilimsel Derlemeler Dergisi, 2(2): 01-34.
  • Altan A., Yağcı S., Maskan M., Göğüş F. 2006. Arpanın Ürün Bazında Degerlendirilmesi, Türkiye 9. Gıda Kongresi Bildir Özetleri Kitabı, pp496-498, 24-26 Mayıs, Bolu.
  • Valenzuela H., Smith j. 2002. Barley, Sustainable Agriculture Green Manure Crops, 3: 1-3.
  • Yılmaz N. 2007. Arpa, T.E.A.E-Bakış, 9(2): 1-4.
  • Lin Y., Tanaka S. 2006. Ethanol Fermentation from Biomass Resources: Current State and Prospects, Appl. Microbiol. Biotechnol., 69: 627-642.
  • Meryandini A., Melani V., Sunarti T. C. 2011. Addition of Cellulolytic Bacteria to İmproved the Quality of Fermented Cassava Flour, African Journal of Food Science and Technology, 2(2): 030- 035.
  • Polycarpou P. 2009. Bioethanol Production from Asphodelus aestivus, Renewable Energy, 34: 2525-2527.
  • Sawidis T., Kalyva S., Delivopoulos S. 2005. The Root-Tuber Anatomy of Asphodelus aestivus, Flora, 200: 332-338.
  • Kaya M., Kammesheidt L., Weidelt H.-J. 2002. The Forest Garden System of Saparua İsland, Central Maluku, Indonesia and İts Role in Maintaining Tree Species Diversity, Agroforestry Systems, 54: 225-234.
  • Kuroda K.-I., Ozawa T., Ueno T. 2001. Characterization of Sago Palm (Metroxylon sagu) Lignin by Analytical Pyrolysis, J Agric Food Chem, 49: 1840-184.
  • Taherzadeh M. J., Karimi K. 2007. Acid-Based Hydrolysis Processes for Ethanol from Lignocellulosic Materials: A Review”, Bioresources, 2(3): 472-499.
  • Sluiter J. B., Ruız R. O., Scarlata C. J., Sluiter A. D., Templeton D. V. 2010. Compositional Analysis of Lignocellulosic Feedstocks. 1. Review and Description of Methods, J Agric Food Chem, 58: 9043-9053.
  • Kim S., Dale B. E. 2004. Global Potential Bioethanol Production from Wasted Crops and Crop Residues, Biomass and Bioenergy, 26: 361-375.
  • Tuomela M., Vikman M., Hatakka A., Itävaara M. 2000. Biodegradation of Lignin in A Compost Environment: A Review, Bioresource Technology, 72: 169-183.
  • Winger M., Christen M., van Gunsteren V. F. 2009. On the Conformational Properties of Amylose and Cellulose Oligomers in Solution, International Journal of Carbohydrate Chemistry,1-8.
  • Tolonen L. K., Zuckerstätter G., Penttilä P. A., Milacher V., Habicht V., Serimaa R., Kruse A., Sixta H. 2011. Structural Changes in Microcrystalline Cellulose in Subcritical Water Treatment, Biomacromolecules, 12: 2544-2551.
  • O'sullıvan A. C. 1997. Cellulose: The Structure Slowly Unravels”, Cellulose, 4: 173-207.
  • Lee K.Y., Quero F., Blaker J. J., Hill C. S. A., Eichhorn S. J., Bismarck A. 2011. Surface Only Modification of Bacterial Cellulose Nanofibres with Organic Acids, Cellulose 18: 595-603.
  • Fahma F., Iwamoto S., Hori N., Iwata T., Takemura A. 2011. Effect of Pre-Acid-Hydrolysis Treatment on Morphology and Properties of Cellulose Nanowhiskers from Coconut Husk, Cellulose, 18: 443-450.
  • Morohoshi N. 1991. Chemical Characterization of Wood and Its Components, Wood And Cellulosic Chemistry, 331-392.
  • Zhang Y. H. P. 2008. Reviving The Carbohydrate Economy Via Multi-Product Lignocellulose Bioreffineries, J Ind Microbiol Biotechnol, 35: 367-375.
  • Mosier N., Wyman C., Dale B., Elander R., Lee Y. Y., Holtzapple M., Ladisch M. 2005. Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass, Bioresource Technology, 96: 673-686.
  • McMillan J. D. 1993. Pretreatment Of Lignocellulosic Biomass - Himmel, M. E., Baker, J. O., Overend, R. P., “Enzymatic Conversion Of Biomass For Fuel Production”, American Chemical Society, s292-323, Washington.
  • Aspinall G. O. 1980. Chemistry of Cell Wall Polysaccharides, - Preiss, J., “The Biochemistry Of Plants (A Comprehensive Treatise), Vol 3. Carbohydrates: Structure And Function”, Academic Press, 473–500, New York.
  • Kormelink F. J. M., Voragen A. G. J. 1993. Degradation of Different [(Glucurono)Arabino] Xylans by A Combination of Purified Xylan-Degrading Enzymes, Appl Microbiol Biotechnol, 38: 688-695.
  • Shibuya N., Iwasaki T. 1985. Structural Features of Rice Bran Hemicellulose, Phytochemistry, 24: 285-289..
  • Saha B. C., Bothast R. J. 1999. Pretreatment and Enzymatic Saccharification of Corn Fiber.”, Appl. Biochem. Biotechnol. 76: 65-77.
  • Dominguez J. M., Gong S. G., Tsao G. T. 1996. Pretreatment of Sugar Cane Bagasse Hemicellulose Hydrolyzate for Xylitol Production by Yeast, Appl Biochem Biotechnol, 5(58): 49-56.
  • Saha B. C. 2003. Hemicellulose Bioconversion, J. Ind Microbiol Biotechnol, 30: 279-291.
  • Demirbaş A. 2009. “Biofuels, Securing the Planet’s Future Energy Needs”, Springer Verlag
  • London Limited, ISBN 978-1-84882-010-4.
  • Kuru A. 2009. Thermofilik Streptomyces Sp.NT508 Suşundan İzole Edilen Peroksidaz ve Endoksilanaz Enzimlerinin Karakterizasyonu, Mersin Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 142s, Mersin.
  • Kurtuluş M. 2010. Lignoselülozik Materyallerden Termokatalitik İşlemle Suda Çözündürülen
  • Polisakkaritlerin Moleküler Yapılarının İncelenmesi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 91s, Adana.
  • Hofrichter M. 2002. Review: Lignin Conversion by Manganese Peroxidase (MnP), Enzyme and Microbial Technology, 30: 454-466.
  • Cosgrove D. J. 2005. Growth of The Plant Cell Wall, Nature Reviews Molecular Cell Biology, 6: 850-861.
  • Adıgüzel A. O. 2012. Kimyasal Ön-İşlemlerden Geçirilmiş Lignoselülozik Atıkların Streptomyces Sp.
  • AOA40 Enzimleriyle Şeker Şurubuna Dönüştürülmesi, Mersin Üniversitesi Fen
  • Bilimleri Enstitüsü, Yüksek Lisans Tezi, 158s, Mersin.
  • Bugg T. 2004. Introduction to Enzyme and Coenzyme Chemistry, Blackwell Publishing Ltd, 292s, Great Britain,
  • Ek M., Gellerstedt G., Henriksson G. 2009. Wood Chemistry and Wood Biotechnology, Walter de Gruyter GmbH & Co. KG, 308s, Göttingen.
  • Erbil N., Coruk G., Dığrak M. 2006. Kahraman Maraş Civarındaki Ekstrem Ortamlardan İzole Edilen Bakterilerde Lignin Biyodegredasyonunun Araştırılması, Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 18(4): 485-492.
  • Das A., Paul T., Jana A., Halder S. K., Ghosh K., Maity C., Mohapatra P. K. D., Pati B. R., Mondal K. C. 2013. Bioconversion of Rice Straw to Sugar Using Multizyme Complex of Fungal Origin And Subsequent Production of Bioethanol by Mixed Fermentation of Saccharomyces cerevisiae MTCC 173 and Zymomonas mobilis MTCC 2428, Industrial Crops and Products 46: 217-225.
  • Saha B. C., Yoshida T., Cotta M. A., Sonomoto K. 2013. Hydrothermal Pretreatment and Enzymatic Saccharification of Corn Stover for Efficient Ethanol Production, Industrial Crops and Products 44: 367-372.
  • Cao W., Sun C., Liu R., Yin R., Wu X. 2012. Comparison of the Effects of Five Pretreatment Methods On Enhancing the Enzymatic Digestibility and Ethanol Production From Sweet Sorghum Bagasse, Bioresource Technology, 111: 215-221.
  • Jung Y. H., Kim I. J., Kim H. K., Kim K. H. 2013. Dilute Acid Pretreatment of Lignocellulose for Whole Slurry Ethanol Fermentation, Bioresource Technology, 132: 109-114
  • Singh A., Nigam P. S., Murphy J. D. 2011. Renewable Fuels From Algae: An Answer to Debatable Land Based Fuels, Bioresource Technology, 102: 10-16.
  • Gouveia V., Oliveira A. C. Microalgae as A Raw Material for Biofuels Production”, J Ind Microbiol Biotechnol, 36: 269-274.
  • Scholz M. J., Riley M. R., Cuello J. L. 2013. Acid Hydrolysis and Fermentation of Microalgal Starches to Ethanol by the Yeast Saccharomyces cerevisiae, Biomass and Bioenergy, 48:58-65.
  • Harun R., Danquah M. K. 2011. Influence of Acid Pretreatment on Microalgal Biomass for Bioethanol Production, Process Biochemistry, 46(1): 304-309.
Toplam 108 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Ali Osman Adıgüzel Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2013
Gönderilme Tarihi 5 Ocak 2015
Yayımlandığı Sayı Yıl 2013 Cilt: 2 Sayı: 2

Kaynak Göster

IEEE A. O. Adıgüzel, “Biyoetanolün Genel Özellikleri ve Üretimi İçin Gerekli Hammadde Kaynakları”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 2, sy. 2, ss. 204–220, 2013.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr