Araştırma Makalesi
BibTex RIS Kaynak Göster

Solitary Type Solutions for the Long–Short–Wave Interaction System Using the Unified Method

Yıl 2018, Cilt: 7 Sayı: 1, 133 - 143, 29.06.2018
https://doi.org/10.17798/bitlisfen.416700

Öz

The Long-Short-Wave interaction system plays a
significant role between low frequency long waves and high frequency short
waves. Besides being an important complex model it is also related with several
physical phenomenon such as, gravity and water waves, plasma and bio-physics,
nonlinear optic.  This system was handled
by many researchers and solutions of this system were obtained by using
different methods.  In this paper, new
solitary type solutions for the Long-short-wave interaction system are formaly
drived by using different method namely the unified method. The obtained
solutions can be considered as improved version of the previous solutions. This
study also shows the efficiency of the unified method.

Kaynakça

  • Wang, M. L., Wang, Y. M., Zhang, J. L. 2003. The periodic wave solutions for two systems of nonlinear wave equations. Chin. Phys., 12: 1341.
  • Bekir, A., Ünsal, Ö. 2012. Periodic and solitary wave solutions of coupled nonlinear wave equations using the first integral method, Phys. Scr. , 85: 065003.
  • Sirendaoerji. 2017. Constructing infinite number of exact travelling wave solutions of nonlinear evolution equations via an extended tanh-function method, International Journal of Nonlinear Science, 24: 161–168.
  • Huibin, L., Kelin, W. 1990. Exact solutions for some coupled nonlinear equations II, Journal of Physics A: Mathematical and General, 23: 4197-4105.
  • Malfliet, W., Hereman, W. 1996. The tanh method. I: Exact solutions of nonlinear evolution and wave equations, Phys. Scr., 54: 563-568.
  • Fan, E.G. 2000. Extended tanh-function method and its applications to nonlinear equations, Phys Lett. A, 277: 212-218.
  • El-Wakil, S. A. , El-Labany, S. K. , Zahran, M. A., Sabry, R. 2005. Modified extended tanh-function method and its applications to nonlinear equations, Appl. Math. Comput., 161: 403-412.
  • Khuri, S. A. 2004. A complex tanh-function method applied to nonlinear equations of Schrödinger type, Chaos, Solitons and Fractals, 20: 1037-1040.
  • Wang, M., Li, X., Zhang, J. 2008. The (G'/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Physics Letters A, 372: 417-423.
  • Gözükızıl, Ö. F., Akçağıl, Ş., Aydemir, T. 2016. Unification of all hyperbolic tangent function methods, Open Phys.,

Travelling Wave Solutions for the Long–Short–Wave Interaction System Using the Unified Method

Yıl 2018, Cilt: 7 Sayı: 1, 133 - 143, 29.06.2018
https://doi.org/10.17798/bitlisfen.416700

Öz

Uzun-Kısa-Dalga
etkileşimi sistemi, düşük frekanslı uzun dalgalar ve yüksek frekanslı kısa
dalgalar arasında önemli bir rol oynar. Önemli bir kompleks model olmasının
yanı sıra, yerçekimi ve su dalgaları, plazma ve biyofizik, doğrusal olmayan
optik gibi çeşitli fiziksel olgularla da ilgilidir. Bu sistem birçok
araştırmacı tarafından ele alınmış ve farklı yöntemler kullanılarak bir çok
çözümü elde edilmiştir. Bu çalışmada, uzun-kısa-dalga etkileşim sisteminin yeni
solitary tip çözümleri, unified yöntem olarak elde edilecektir. Elde edilen
çözümler önceki çözümlerin geliştirilmiş versiyonu olarak düşünülebilir. Bu
çalışma aynı zamanda unified  yöntemin
etkinliğini de göstermektedir.

Kaynakça

  • Wang, M. L., Wang, Y. M., Zhang, J. L. 2003. The periodic wave solutions for two systems of nonlinear wave equations. Chin. Phys., 12: 1341.
  • Bekir, A., Ünsal, Ö. 2012. Periodic and solitary wave solutions of coupled nonlinear wave equations using the first integral method, Phys. Scr. , 85: 065003.
  • Sirendaoerji. 2017. Constructing infinite number of exact travelling wave solutions of nonlinear evolution equations via an extended tanh-function method, International Journal of Nonlinear Science, 24: 161–168.
  • Huibin, L., Kelin, W. 1990. Exact solutions for some coupled nonlinear equations II, Journal of Physics A: Mathematical and General, 23: 4197-4105.
  • Malfliet, W., Hereman, W. 1996. The tanh method. I: Exact solutions of nonlinear evolution and wave equations, Phys. Scr., 54: 563-568.
  • Fan, E.G. 2000. Extended tanh-function method and its applications to nonlinear equations, Phys Lett. A, 277: 212-218.
  • El-Wakil, S. A. , El-Labany, S. K. , Zahran, M. A., Sabry, R. 2005. Modified extended tanh-function method and its applications to nonlinear equations, Appl. Math. Comput., 161: 403-412.
  • Khuri, S. A. 2004. A complex tanh-function method applied to nonlinear equations of Schrödinger type, Chaos, Solitons and Fractals, 20: 1037-1040.
  • Wang, M., Li, X., Zhang, J. 2008. The (G'/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Physics Letters A, 372: 417-423.
  • Gözükızıl, Ö. F., Akçağıl, Ş., Aydemir, T. 2016. Unification of all hyperbolic tangent function methods, Open Phys.,
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Şamil Akçağıl

Yayımlanma Tarihi 29 Haziran 2018
Gönderilme Tarihi 18 Nisan 2018
Kabul Tarihi 5 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 7 Sayı: 1

Kaynak Göster

IEEE Ş. Akçağıl, “Solitary Type Solutions for the Long–Short–Wave Interaction System Using the Unified Method”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 7, sy. 1, ss. 133–143, 2018, doi: 10.17798/bitlisfen.416700.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr