Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 8 Sayı: 3, 731 - 741, 30.09.2019
https://doi.org/10.17798/bitlisfen.515214

Öz

Kaynakça

  • 1. Al-Azzawi, S. F. 2012. Stability and bifurcation of pan chaotic system by using Routh-Hurwitz and Gardan methods. Appl Math. Comput 2012, 219, 1144–1152.
  • 2. Burton, T. A. 1985. Stability and Periodic Solutions of Ordinary and Functional Differential Equations, Academic Press, Orlando, 337.
  • 3. Ertl, J. P., Schafer, E.W.P. 1969. Brain response Correlates of psychometric intelligence, Nature, 223, 421-422.
  • 4. Ha, N. T. T., Strodiot, J. J, Vuong P. T. 2018. On the global exponential stability of a projected dynamical system for strongly pseudomonotone variational inequalities, Optim Lett., 12:1625-1638.
  • 5. Li, D., Lu, J., Wu, X. 2005. Chen, G., Estimating the Bounds for the Lorenz family of chaotic systems, Chaos Solitons Fractals, 23 , no. 2, 529–534.
  • 6. Li, D., Lu, J., Wu, X., Chen, G. 2006. Estimating the ultimate bound and positively invariant set for the Lorenz System and a unified chaotic system, J.Math. Anal.Appl., 323 (2), 844–853.
  • 7. Li, D., Wu, X., Lu, J., 2009. Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz-Haken system. Chaos Solitons Fractals 39 , no. 3, 1290–1296.
  • 8. Li, T., Chen, G., Tang, Y. 2004. On stability and bifurcation of Chen’s system, Chaos, Solitons and fractals, 19(5), 1269-1282.
  • 9. Lorenz, E. N. 1963. Deterministic non-periodic flow, J. Atmos. Sci. 20, 130-141.
  • 10. Lorenz, E. N. 1963. The Essence of Chaos, Washington unv.
  • 11. Luo, Q., Liao X. X., Zeng Z. G. 2010. Sufficient and Necessary Conditions for Lyapunov Stability of Lorenz System and their Application, Sci. China Inf. Sci., 53 (8), 1574–1583.
  • 12. Lü, J., Chen, G. 2002. A new chaotic attractor coined, International Journal of Bifurcation and Chaos, 12, 659-661.
  • 13. Pamuk, N. 2013. Dinamik Sistemlerde Kaotik Zaman Dizilerinin Tespiti, BAÜ Fen Bil. Enst. Dergisi Cilt 15(1) 77-91.
  • 14. Ross, S. L. 1984. Introduction to ordinary differential equations, Fourth edition, With the assistance of Shepley L. Ross II. John Wiley & Sons, Inc., New York.
  • 15. Rizgar, H. S. 2011. The Stability Analysis of the Shimizu-Morioka System with Hopf Bifurcation, Journal of Kirkuk University-Scientific Studies, vol.6, no.2, 184-200.
  • 16. Rössler, O. E. 1976. An Equation for Continuous Chaos . Phys . Lett. A 57, 397-398.
  • 17. Tigan, G. 2005. Bifurcation and stability in a system derived from the Lorenz system, Balkan Society of Geometers, Geometry Balkan Press., 265-272.
  • 18. Ueta, T., Chen, G. 2000. Bifurcation analysis of Chen's equation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10, no. 8, 1917–1931.
  • 19. Weiss H., Weiss, V. 2003. The golden mean as clock cycle of brain waves, Chaos, solitons and fractals 18 (4), 1917-1931.
  • 20. Zhang, F., Mu, C., Li, X. 2012. On the boundness of some solutions of the Lü system, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 22 , no. 1, 5 pp.
  • 21. Zhang, F., Mu, C., Zhou, S., Zheng, P. 2015. New results of the ultimate bound on the trajectories of the family of the Lorenz systems, Discrete Contin. Dyn. Syst. Ser. B 20, no.4, 1261-1276.
  • 22. Zhang, F., Shu, Y., Yang, H. 2011. Bounds for a new chaotic system and its application in chaos synchronization, Commun. Nonlinear Sci. Numer. Simul. 16 , no. 3, 1501–1508.

Lorenz Benzeri Doğrusal Olmayan Üç Boyutlu Yeni Bir Diferansiyel Denklem Sisteminin Kararlılık Analizi

Yıl 2019, Cilt: 8 Sayı: 3, 731 - 741, 30.09.2019
https://doi.org/10.17798/bitlisfen.515214

Öz

Kaotik sistemler, başlangıç koşullarına duyarlı ve ölçülemeyecek karmaşıklıktaki dinamik sistemler olarak ifade edilebilir. Başlangıç koşullarına olan duyarlılığının yanında kaotik sistemler, geniş bantlı ve periyodik olmayan bir özelliğe sahiptir. Bu özelliklerinden dolayı söz konusu bu sistemler, özellikle mühendislik alanlarında olmak üzere farklı bilim dallarında geniş uygulama alanına sahiptir. Bu makalede Lorenz benzeri doğrusal olmayan üç boyutlu yeni bir diferansiyel denklem sisteminin kararlılığı araştırılmıştır. Çalışmada öncelikle dikkate alınan sistemin denge noktaları belirlenmiş ve kararlılık kriterleri Hurwitz koşulları kullanılarak incelenmiştir. Daha sonra, bu sistemin üstel kararlılığı için gerek ve yeter koşullar tartışılmıştır. Sonuç olarak, elde edilen sonuçlar ilgili literatürde bulunan sonuçları içerir ve geliştirir.

Kaynakça

  • 1. Al-Azzawi, S. F. 2012. Stability and bifurcation of pan chaotic system by using Routh-Hurwitz and Gardan methods. Appl Math. Comput 2012, 219, 1144–1152.
  • 2. Burton, T. A. 1985. Stability and Periodic Solutions of Ordinary and Functional Differential Equations, Academic Press, Orlando, 337.
  • 3. Ertl, J. P., Schafer, E.W.P. 1969. Brain response Correlates of psychometric intelligence, Nature, 223, 421-422.
  • 4. Ha, N. T. T., Strodiot, J. J, Vuong P. T. 2018. On the global exponential stability of a projected dynamical system for strongly pseudomonotone variational inequalities, Optim Lett., 12:1625-1638.
  • 5. Li, D., Lu, J., Wu, X. 2005. Chen, G., Estimating the Bounds for the Lorenz family of chaotic systems, Chaos Solitons Fractals, 23 , no. 2, 529–534.
  • 6. Li, D., Lu, J., Wu, X., Chen, G. 2006. Estimating the ultimate bound and positively invariant set for the Lorenz System and a unified chaotic system, J.Math. Anal.Appl., 323 (2), 844–853.
  • 7. Li, D., Wu, X., Lu, J., 2009. Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz-Haken system. Chaos Solitons Fractals 39 , no. 3, 1290–1296.
  • 8. Li, T., Chen, G., Tang, Y. 2004. On stability and bifurcation of Chen’s system, Chaos, Solitons and fractals, 19(5), 1269-1282.
  • 9. Lorenz, E. N. 1963. Deterministic non-periodic flow, J. Atmos. Sci. 20, 130-141.
  • 10. Lorenz, E. N. 1963. The Essence of Chaos, Washington unv.
  • 11. Luo, Q., Liao X. X., Zeng Z. G. 2010. Sufficient and Necessary Conditions for Lyapunov Stability of Lorenz System and their Application, Sci. China Inf. Sci., 53 (8), 1574–1583.
  • 12. Lü, J., Chen, G. 2002. A new chaotic attractor coined, International Journal of Bifurcation and Chaos, 12, 659-661.
  • 13. Pamuk, N. 2013. Dinamik Sistemlerde Kaotik Zaman Dizilerinin Tespiti, BAÜ Fen Bil. Enst. Dergisi Cilt 15(1) 77-91.
  • 14. Ross, S. L. 1984. Introduction to ordinary differential equations, Fourth edition, With the assistance of Shepley L. Ross II. John Wiley & Sons, Inc., New York.
  • 15. Rizgar, H. S. 2011. The Stability Analysis of the Shimizu-Morioka System with Hopf Bifurcation, Journal of Kirkuk University-Scientific Studies, vol.6, no.2, 184-200.
  • 16. Rössler, O. E. 1976. An Equation for Continuous Chaos . Phys . Lett. A 57, 397-398.
  • 17. Tigan, G. 2005. Bifurcation and stability in a system derived from the Lorenz system, Balkan Society of Geometers, Geometry Balkan Press., 265-272.
  • 18. Ueta, T., Chen, G. 2000. Bifurcation analysis of Chen's equation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10, no. 8, 1917–1931.
  • 19. Weiss H., Weiss, V. 2003. The golden mean as clock cycle of brain waves, Chaos, solitons and fractals 18 (4), 1917-1931.
  • 20. Zhang, F., Mu, C., Li, X. 2012. On the boundness of some solutions of the Lü system, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 22 , no. 1, 5 pp.
  • 21. Zhang, F., Mu, C., Zhou, S., Zheng, P. 2015. New results of the ultimate bound on the trajectories of the family of the Lorenz systems, Discrete Contin. Dyn. Syst. Ser. B 20, no.4, 1261-1276.
  • 22. Zhang, F., Shu, Y., Yang, H. 2011. Bounds for a new chaotic system and its application in chaos synchronization, Commun. Nonlinear Sci. Numer. Simul. 16 , no. 3, 1501–1508.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Yener Altun 0000-0003-1073-5513

Abdullah Yiğit

Yayımlanma Tarihi 30 Eylül 2019
Gönderilme Tarihi 20 Ocak 2019
Kabul Tarihi 1 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 8 Sayı: 3

Kaynak Göster

IEEE Y. Altun ve A. Yiğit, “Lorenz Benzeri Doğrusal Olmayan Üç Boyutlu Yeni Bir Diferansiyel Denklem Sisteminin Kararlılık Analizi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 8, sy. 3, ss. 731–741, 2019, doi: 10.17798/bitlisfen.515214.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr