Yıl 2019, Cilt 8 , Sayı 3, Sayfalar 1029 - 1044 2019-09-30

Yara Örtü Malzemesi Olarak Elektroeğrilmiş PCL/PHBV Membranların Hazırlanması ve Karakterizasyonu
The Preparation and Characterization of Electrospun PCL/PHBV Membranes as Wound Dressing Material

İsmail Alper İŞOĞLU [1]


Bu çalışmada, yara örtü malzemesi olarak polikaprolakton (PCL), poli(3-hidroksibütirik asit-ko-3-hidroksivalerik asit) (PHBV) ve ağırlıkça farklı oranlarda (100:0, 50:50, 75:25, 0:100) PCL/PHBV karışımları, farklı çözücüler (kloroform (CHCl3), 1,1,1,3,3,3-Hexfluoro-2-propanol (HFIP) ve bunların karışımları) kullanılarak elektroeğirme tekniği ile fibroz yapıda membranlar hazırlanmıştır. Tüm elektroeğrilmiş membranlar Fourier Dönüşümlü Kızılötesi Spektroskopisi (FT-IR), Diferansiyel Taramalı Kalorimetre (DSC) ve Taramalı Elektron Mikroskobu (SEM) ile yapı, morfoloji ve ısıl özellikleri açısından karakterize edilmiştir. Ayrıca, absorbsiyon testi ile sıvı tutma kapasiteleri analiz edilmiştir. Karakterizasyon basamağından sonra, seçilen membranların üzerine insan fibroblast hücreleri ekilmiş, in vitro hücre canlılık ve toksisite, MTT testi ile 24, 48 ve 72. saat için analiz edilmiştir. Membranların üzerine ekilen hücrelerin çoğalması 36, 72 ve 120. saat olmak üzere 3 farklı süre için incelenmiş, sonuçlar SEM ile gösterilmiştir. Elde edilen sonuçlar PCL/PHBV (75:25) karışım ile HFIP çözeltisinde elektroeğrilen membranın yara örtü malzemesi olarak kullanılabileceğini göstermiştir.

In this study, fibrous membranes of Polycaprolactone (PCL), Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and PCL/PHBV blends in different weight ratios (100:0, 50:50, 75:25, 0:100) were prepared using different solvents (chloroform (CHCl3), 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) and their blends) via electrospinning technique as wound dressing materials. Structural, morphological, and thermal characterizations of membranes were performed by Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM) and Differential Scanning Calorimetry (DSC), respectively. Moreover, the water-uptake capacity of the membranes were analyzed using absorption test. Following that, human fibroblast cells were seeded on the selected membranes and in vitro cell viability and toxicity were monitored by MTT assay for 24, 48 and 72th hours.  The seeded cell proliferation on membranes was conducted for 36, 72 and 120th hours and the results were examined by SEM. The results of this study relieved that electrospun PCL/PHBV (75:25) blend membrane solved in HFIP can be used as wound dressing materials.    

  • 1. Kuppan, P., Kirthanashri S.V., Dhakshinamoorthy S., Uma M.K., and Swaminathan S. 2011. Development of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Fibers for Skin Tissue Engineering: Effects of Topography, Mechanical, and Chemical Stimuli, Biomacromolecules, 12 (9): 3156–3165.
  • 2. Zonari, A., Cerqueira M.T., Novikoff, S., Goes A.M., Marques, A.P., Correlo, V.M. and Reis, R.L. 2014. Poly(hydroxybutyrate-co-hydroxyvalerate) Bilayer Skin Tissue Engineering Constructs with Improved Epidermal Rearrangement, Macromolecular Bioscience, 14 (7): 977–990.
  • 3. Du, L., Xu, H.Z., Li, T., Zhang, Y. and Zou, F.Y. 2017. Fabrication of Ascorbyl Palmitate Loaded Poly(caprolactone)/Silver Nanoparticle Embedded Poly(vinyl alcohol) Hybrid Nanofibre Mats as Active Wound Dressings: Via Dual-Spinneret Electrospinning, RSC Advances, 7 (50): 31310–31318.
  • 4. Augustine R., Anto Dominic E., Reju I., Kaimal B., Kalarikkal N., Thomas S. 2015. Electrospun Poly(e-caprolactone)-Based Skin Substitutes: In Vivo Evaluation of Wound Healing and The Mechanism of Cell Proliferation, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103 (7): 1445–1454.
  • 5. Sahana, T.G., Rekha, P.D. 2018. Biopolymers: Applications in Wound Healing and Skin Tissue Engineering, Molecular Biology Report, 45 (6): 2857-2867.
  • 6. Moura D., Souza M.T., Liverani L., Rella G., Luz G.M., Mano J.F., Boccaccini A.R. 2017. Development of A Bioactive Glass-Polymer Composite for Wound Healing Applications, Materials Science and Engineering C, 76: 224-232.
  • 7. Sundaramurthi D., Krishnan U.M., Sethuraman S. 2014. Epidermal Differentiation of Stem Cells on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) Nanofibers, Annals of Biomedical Engineering, 42 (12): 2589–2599.
  • 8. Lee J.M., Chae T., Sheikh F.A., Ju H.W., Moon B.M., Park H.J., Park Y.R., Park C.H. 2016. Three Dimensional Poly(ε-caprolactone) and Silk Fibroin Nanocomposite Fibrous Matrix for artificial Dermis, Materials Science and Engineering: C, 68: 758–67.
  • 9. MacEwan M.R., Macewan S., Kovacs T.R., Batts J. 2017. What Makes the Optimal Wound Healing Material? A Review of Current Science and Introduction of a Synthetic Nanofabricated Wound Care Scaffold. 9 (10), 1736-1748.
  • 10. Biazar E. 2017. Application of Polymeric Nanofibers in Medical Designs, Part I: Skin and Eye, International Journal of Polymeric Materials and Polymeric Biomaterials, 66 (10): 521–531.
  • 11. Miguel S.P., Figueira D.R., Simões D., Ribeiro M.P., Coutinho P., Ferreira P., Correia I.J. 2018. Electrospun Polymeric Nanofibres as Wound Dressings: A Review, Colloids Surfaces B Biointerfaces, 169: 60–71.
  • 12. Lv F., Wang J., Xu P., Han Y., Ma H., Xu H., Chen S., Chang J., Ke Q., Liu M., Yi Z., Wu C. 2017. A Conducive Bioceramic/Polymer Composite Biomaterial for Diabetic Wound Healing, Acta Biomaterialia, 60: 128–143.
  • 13. Bölgen N., Menceloǧlu Y.Z., Acatay K., Vargel I., Pişkin E. 2005 In Vitro and In Vivo Degradation of Non-Woven Materials Made of Poly(Ε-Caprolactone) Nanofibers Prepared by Electrospinning Under Different Conditions. Journal of Biomaterials Science, Polymer Edition, 16 (12): 1537–1555.
  • 14. Rather H.A., Thakore R., Singh R., Jhala D., Singh S., Vasita R. Antioxidative Study of Cerium Oxide Nanoparticle Functionalised PCL-Gelatin Electrospun Fibers for Wound Healing Application, Bioactive Materials, 3 (2): 201–211.
  • 15. Yuan J., Geng J., Xing Z., Shim K-J., Han I., Kim J-C., Kang I-K., Shen J. 2015. Novel Wound Dressing Based on Nanofibrous PHBV–Keratin Mats, Journal of Tissue Engineering and Regenerative Medicine, 9: 1027–1035.
  • 16. Tohidi S., Ghaee A., Barzin J. 2016, Preparation and Characterization of Poly(lactic-co-glycolic acid)/Chitosan Electrospun Membrane Containing Amoxicillin-Loaded Halloysite Nanoclay, Polymers for Advanced Technologies, 27: 1020-1028.
  • 17. Dias J.R., Granja P.L., Bártolo P.J. 2016. Advances in Electrospun Skin Substitutes, Progress in Materials Science, 84: 314-334.
  • 18. Zhang W., Ronca S., Mele E. 2017. Electrospun Nanofibres Containing Antimicrobial Plant Extracts, Nanomaterials, 7 (2): 42-59.
  • 19. Patil J.V., Mali S.S., Kamble A.S., Hong C.K., Kim J.H., Patil P.S. 2017. Electrospinning: a Versatile Technique for Making of 1D Growth of Nanostructured Nanofibers and Its Applications: An Experimental Approach. Applied Surface Science, 423: 641–674.
  • 20. Chen S., Liu B., Carlson M.A., Gombart A.F., Reilly D.A., Xie J. 2017. Recent Advances in Electrospun Nanofibers for Wound Healing, Nanomedicine, 12: 1335-1352.
  • 21. Liu M., Duan X., Li Y., Yang D., Long Y. 2017. Electrospun Nano Fibers for Wound Healing, Materials Science and Engineering C, 76: 1413-1423.
  • 22. Mir M., Ali M.N., Barakullah A., Gulzar A., Arshad M, Fatima S., Asad M. 2018. Synthetic Polymeric Biomaterials for Wound Healing: A Review, Progress in Biomaterials, 7 (1): 1-21.
  • 23. Siddiqui N., Asawa S., Birru B., Baadhe R., Rao S. 2018. PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications. Molecular Biotechnology, 60: 506–532.
  • 24. Thanh Tra N., Minh H.H., Nam T.M.H., Thien D.B.T., Hoai, N.T.T., Phuoc, T.V., Thai D.M., Hai, N.D., Toi, V.V., Hiep, N.T. 2018. Optimization and Characterization of Electrospun Polycaprolactone Coated with Gelatin-Silver Nanoparticles for Wound Healing Application, Materials Science & Engineering C, 91: 318-329.
  • 25. Martins A.F., Facchi S.P., da Câmara P.C.F., Camargo S.E.A., Camargo C.H.R., Popat K.C., Kipper M.J. 2018. Novel Poly(ε-Caprolactone)/Amino-Functionalized Tannin Electrospun Membranes as Scaffolds for Tissue Engineering, Journal of Colloid and Interface Science, 525: 21-30.
  • 26. Mutlu G., Calamak S., Ulubayram K., Guven E. 2018. Curcumin-Loaded Electrospun PHBV Nanofibers as Potential Wound-Dressing Material, Journal of Drug Delivery Science and Technology, 43: 185-193.
  • 27. Veleirinho B., Coelho D.S., Dias P.F., Maraschin M., Ribeiro-do-Valle R.M., Lopes-da-Silva J.A. 2012. Nanofibrous Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Chitosan Scaffolds for Skin Regeneration. International Journal of Biological Macromolecules, 51 (4): 343-350.
  • 28. Shishatskaya E.I., Nikolaeva E.D., Vinogradova O.N., Volova T.G. 2016. Experimental Wound Dressings of Degradable PHA for Skin Defect Repair, Journal of Materials Science: Materials in Medicine, 27 (11): 165.
  • 29. Adeli-Sardou M., Yaghoobi M.M., Torkzadeh-Mahani M., Dodel M. 2019. Controlled Release of Lawsone from Polycaprolactone/Gelatin Electrospun Nano Fibers for Skin Tissue Regeneration, International Journal of Biological Macromolecules, 124: 478-491.
  • 30. Ehterami A., Salehi M., Farzamfar S., Vaez A., Samadian H., Sahrapeyma H., Mirzaii M., Ghorbani S., Goodarzi A. 2018. In Vitro and In Vivo Study of PCL/COLL Wound Dressing Loaded with Insulin-Chitosan Nanoparticles on Cutaneous Wound Healing in Rats Model, International Journal of Biological Macromolecules, 117: 601-609.
  • 31. İşoğlu İ.A., Demirkan C., Şeker M.G., Tuzlakoğlu K., İşoğlu S.D. 2018. Antibacterial Bilayered Skin Patches Made of HPMA and Quaternary Poly(4-Vinyl Pyridine). Fibers and Polymers, 19 (11): 2229-2236.
  • 32. K-Hasuwan P.R., Pavasant P., Supaphol P. 2011. Effect of the Surface Topography of Electrospun Poly(ε-caprolactone)/Poly(3-hydroxybuterate-co-3-hydroxyvalerate) Fibrous Substrates on Cultured Bone Cell Behavior. Langmuir. 27: 10938-10946.
  • 33. Malikmammadov E., Tanir T.E., Kiziltay A., Hasirci V., Hasirci N. 2018. PCL and PCL-Based Materials in Biomedical Applications, Journal of Biomaterials Science, Polymer Edition, 29 (7-9): 863-893.
  • 34. Del Gaudio C., Ercolani E., Nanni F., Bianco A. 2011. Assessment of Poly(ε-caprolactone)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Blends Processed by Solvent Casting and Electrospinning, Materials Science and Engineering A, 528 (3): 1764-1772.
  • 35. Chanda A., Adhikari J., Ghosh A., Roy S., Thomas S., Datta P., Saha P. 2018. Electrospun Chitosan/Polycaprolactone-Hyaluronic Acid Bilayered Scaffold for Potential Wound Healing Applications, International Journal of Biological Macromolecules, 116: 774-785.
Birincil Dil tr
Konular Fen
Bölüm Araştırma Makalesi
Yazarlar

Orcid: 0000-0001-6428-4207
Yazar: İsmail Alper İŞOĞLU (Sorumlu Yazar)
Kurum: ABDULLAH GÜL ÜNİVERSİTESİ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 30 Eylül 2019

Bibtex @araştırma makalesi { bitlisfen530767, journal = {Bitlis Eren Üniversitesi Fen Bilimleri Dergisi}, issn = {2147-3129}, eissn = {2147-3188}, address = {}, publisher = {Bitlis Eren Üniversitesi}, year = {2019}, volume = {8}, pages = {1029 - 1044}, doi = {10.17798/bitlisfen.530767}, title = {Yara Örtü Malzemesi Olarak Elektroeğrilmiş PCL/PHBV Membranların Hazırlanması ve Karakterizasyonu}, key = {cite}, author = {İŞOĞLU, İsmail Alper} }
APA İŞOĞLU, İ . (2019). Yara Örtü Malzemesi Olarak Elektroeğrilmiş PCL/PHBV Membranların Hazırlanması ve Karakterizasyonu. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi , 8 (3) , 1029-1044 . DOI: 10.17798/bitlisfen.530767
MLA İŞOĞLU, İ . "Yara Örtü Malzemesi Olarak Elektroeğrilmiş PCL/PHBV Membranların Hazırlanması ve Karakterizasyonu". Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 8 (2019 ): 1029-1044 <https://dergipark.org.tr/tr/pub/bitlisfen/issue/49103/530767>
Chicago İŞOĞLU, İ . "Yara Örtü Malzemesi Olarak Elektroeğrilmiş PCL/PHBV Membranların Hazırlanması ve Karakterizasyonu". Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 8 (2019 ): 1029-1044
RIS TY - JOUR T1 - Yara Örtü Malzemesi Olarak Elektroeğrilmiş PCL/PHBV Membranların Hazırlanması ve Karakterizasyonu AU - İsmail Alper İŞOĞLU Y1 - 2019 PY - 2019 N1 - doi: 10.17798/bitlisfen.530767 DO - 10.17798/bitlisfen.530767 T2 - Bitlis Eren Üniversitesi Fen Bilimleri Dergisi JF - Journal JO - JOR SP - 1029 EP - 1044 VL - 8 IS - 3 SN - 2147-3129-2147-3188 M3 - doi: 10.17798/bitlisfen.530767 UR - https://doi.org/10.17798/bitlisfen.530767 Y2 - 2019 ER -
EndNote %0 Bitlis Eren Üniversitesi Fen Bilimleri Dergisi Yara Örtü Malzemesi Olarak Elektroeğrilmiş PCL/PHBV Membranların Hazırlanması ve Karakterizasyonu %A İsmail Alper İŞOĞLU %T Yara Örtü Malzemesi Olarak Elektroeğrilmiş PCL/PHBV Membranların Hazırlanması ve Karakterizasyonu %D 2019 %J Bitlis Eren Üniversitesi Fen Bilimleri Dergisi %P 2147-3129-2147-3188 %V 8 %N 3 %R doi: 10.17798/bitlisfen.530767 %U 10.17798/bitlisfen.530767
ISNAD İŞOĞLU, İsmail Alper . "Yara Örtü Malzemesi Olarak Elektroeğrilmiş PCL/PHBV Membranların Hazırlanması ve Karakterizasyonu". Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 8 / 3 (Eylül 2019): 1029-1044 . https://doi.org/10.17798/bitlisfen.530767
AMA İŞOĞLU İ . Yara Örtü Malzemesi Olarak Elektroeğrilmiş PCL/PHBV Membranların Hazırlanması ve Karakterizasyonu. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2019; 8(3): 1029-1044.
Vancouver İŞOĞLU İ . Yara Örtü Malzemesi Olarak Elektroeğrilmiş PCL/PHBV Membranların Hazırlanması ve Karakterizasyonu. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2019; 8(3): 1044-1029.