Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 8 , 77 - 83, 31.12.2019
https://doi.org/10.17798/bitlisfen.635010

Öz

Kaynakça

  • [1] Kalyoncuoğlu Ü.Y., 2015. In situ gamma source radioactivity measurement in Isparta plain, Turkey. Environmental Earth Sciences, 73:3159–3175
  • [2] Kilic A.M., Aykamis A.S. 2009. The natural radioactivity levels and radiation hazard of pumice from the East Mediterranean Region of Turkey. Bulletin of Engineering Geology and Environment, 68: 331–338.
  • [3] Akkurt İ., Uyanık N.A., Günoğlu K. 2015. Radiation dose Estimation: An in vitro measurement for Isparta-Turkey. International Journal of Computational and Experimental Science and Engineering (IJCESEN), 1 (1): 1-4.
  • [4] Trevisi R., Risica S., D’Alessandro M., Paradiso D., Nuccetelli C. 2012. Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance. Journal of Environmental Radioactivity, 105: 11-20.
  • [5] Nuccetelli C., Risica1 S., D’Alessandro M., Trevisi R. 2012. Natural radioactivity in building material in the European Union: robustness of the activity concentration index I and comparison with a room model. Journal of Radiological Protection, 32: 349–358.
  • [6] Sas Z., Doherty R., Kovacs T., Soutsos M., Sha W., Schroeyers W. 2017. Radiological evaluation of by-products used in construction and alternative applications; Part I. Preparation of a natural radioactivity database. Construction and Building Materials, 150 (30): 227-237.
  • [7] Turhan Ş., Yücel H., Gündüz L., Şahin Ş., Vural M., Parmaksiz A., Demircioglu B. 2007. Natural radioactivity measurement in pumice samples used raw materials in Turkey. Applied Radiation and Isotopes, 65 (3): 350-354.
  • [8] Turhan Ş., Atıcı E., Varinlioğlu A. 2015. Radiometric analysis of volcanic tuff stones used as ornamental and structural building materials in Turkey and evaluation of radiological risk. Radioprotection, 50(4): 273-280.
  • [9] Turhan, S. 2008. Assessment of the natural radioactivity and radiological hazards in Turkish cement and its raw materials. Journal of Environmental Radioactivity, 99: 404-414.
  • [10] Uyanik N.A., Akkurt I., Uyanik O. 2010. A ground radiometric study of uranium, thorium and potassium in Isparta, Turkey. Annals of Geophysics, 53 (5-6): doi: 10.4401/ag-4726.
  • [11] Baykara O., Karatepe Ş., Doğru M. 2011. Assessments of natural radioactivity and radiological hazards in construction materials used in Elazig, Turkey. Radiation Measurements, 46 (1): 153-158.
  • [12] Çetin E., Altinsoy N., Örgün Y. 2012. Natural radioactivity levels of granites used in Turkey. Radiation Protection Dosimetry, 151 (2): 299–305.
  • [13] Değerlier M. 2013. Assessment of natural radioactivity and radiation hazard in volcanic tuff stones used as building and decoration materials in the Cappadocia region, Turkey. Radioprotection, 48 (2): 215-229.
  • [14] Tatar Erkül S., Özmen S.F., Erkül F., Boztosun İ. 2016. Comparison between natural radioactivity levels and geochemistry of some granitoids in western Turkey. Turkish Journal of Earth Science, 25: 242-255.
  • [15] Özdiş B.E., Çam N.F., Canbaz B., Öztürk B.C. 2017. Assessment of natural radioactivity in cements used as building materials in Turkey. Journal of Radioanalytical and Nuclear Chemistry, 311: 307–316.
  • [16] Turhan Ş., Gündüz L. 2008. Determination of specific activity of 226Ra, 232Th and 40K for assessment of radiation hazards from Turkish pumice samples. Journal of Environmental Radioactivity, 99 (2): 332-342.
  • [17] Görmüş M., Sagular E.K., Çoban H., 2002. The Miocene sequence characteristics, its contact relation to the older rocks and lamprophyric dykes in the Dereboğazı area (S Isparta, Turkey) Ö.T. Akıncı, M. Görmüş, M. Kuşçu, R. Karagüzel, M. Bozcu (Eds.), Proceedings of the 4th International Symposium on Eastern Mediterranean Geology, Süleyman Demirel University, Isparta, Turkey, 69-90.
  • [18] Kumral M., Çoban H., Gedikoglu A., Kilinc A. 2006. Petrology and geochemistry of augite trachytes and porphyritic trachytes from the Gölcük volcanic region, Isparta, SW Turkey: A case study. Journal of Asian Earth Sciences, 27 (5): 707-716.
  • [19] Elitok Ö., Özgür N., Drüppel K., Dilek Y., Platevoet B., Guillou H., Poisson A., Scaillet S., Satır M., Siebel W., Bardintzeff J.-M., Deniel C., Yılmaz K. 2010. Origin and geodynamic evolution of late Cenozoic potassium-rich volcanism in the Isparta area, southwestern Turkey. International Geology Review, 52 (4–6): 454-504.
  • [20] Sundal A.V., Strand T. 2004. Indoor gamma radiation and radon concentrations in a Norwegian carbonatite area. Journal of Environmental Radioactivity, 77 (2): 175-189.
  • [21] Kaniua M.I., Angeyo H.K., Darby I.G., Muiac L.M. 2018. Rapid in-situ radiometric assessment of the Mrima-Kiruku high background radiation anomaly complex of Kenya. Journal of Environmental Radioactivity, 188, 47-57.
  • [22] Kumral M., Çoban H., Caran Ş. 2007. Th, U and LREE-Bearing grossular, chromian ferriallanite-(Ce) and chromian cerite-(Ce) in skarn xenoliths ejected from the Gölcük maar crater, Isparta, Anatolia, Turkey. The Canadian Mineralogist, 45: 1119-1125.
  • [23] Platevoet B., Elitok Ö., Guillou H., Bardintzeff J.-M., Yağmurlu F., Nomade S., Poisson A., Deniel C., Özgür N. 2014. Petrology of Quaternary volcanic rocks and related plutonic xenoliths from Gölcük Volcano, Isparta Angle, Turkey: origin and evolution of the high-K alkaline series. Journal of Asian Earth Sciences, 92: 53-76.
  • [24] Caran Ş. 2016. Mineralogy and petrology of leucite ankaratrites with affinities to kamafugites and carbonatites from the Kayıköy area, Isparta, SW Anatolia, Turkey: implications for the influences of carbonatite metasomatism into the parental mantle sources of silica-undersaturated potassic magmas. Lithos, 256–257: 13-25.
  • [25] Yılmaz K. 2019. Geochemistry of ultramafic, mafic, and felsic xenoliths from the Gölcük (Isparta, SW Turkey) alkali rocks: genetic relationship with arc magmas. Arabian Journal of Geosciences, 12: 306. https://doi.org/10.1007/s12517-019-4461-6
  • [26] Uyanık N.A., Uyanık O., Akkurt İ. 2013. Micro-zoning of the natural radioactivity levels and seismic velocities of potential residential areas in volcanic fields: The case of Isparta (Turkey). Journal of Applied Geophysics 98: 191-204.
  • [27] Çoban H., Topuz G., Roden M.F., Hoang N., Schwarz W.H., 2019.40Ar-39Ar dating and petrology of monzonite ejecta in tephra from Quaternary Gölcük volcano (Isparta, SW Turkey): tear-related contrasting metasomatic symptoms in extensional mantle-derived magmas. Lithos, 330–331: 160-176.

Investigation of the High Radiation Levels in Plio-Quaternary Volcanic and Pyroclastic Rocks Used as Building Raw Materials in Isparta Volcanic Area, SW Turkey

Yıl 2019, Cilt: 8 , 77 - 83, 31.12.2019
https://doi.org/10.17798/bitlisfen.635010

Öz

Available natural radioactivity (40K, 238U,
232Th)
measurements on Plio-Quaternary volcanic
and pyroclastic rocks, which are usually used to as building raw materials,
from the Isparta region of SW Turkey, released that their radium equivalent
activity values are close to the internationally accepted upper limits and a
potential radiation risk. Here, to deciphere the what caused the high radiation
values in these volcanic materials carrying value by more than three times the
equivalent materials in Turkey, the relationship between their magma and source
characteristics has been investigated. Recent volcanological studies have shown
that potassic-ultrapotassic magmas governed the genesis of the Isparta
volcanism. K-rich character’s and elevated concentrations of radiogenic (e.g.,Th
and U) and total rare earth elements (∑REE) are their most diagnostic features.
These characteristics are also similar to some mantle-derived carbonatites  (e.g., Norwage and Kenya) with high radiation
levels. To support this, recent investigations also revealed that the origin of
Isparta potassic volcanism is associated with a common and enriched mantle
source, which were interacted with carbonatite melts. Accordingly, carbonatitic
melts left their geochemical imprints into their mantle sources, and partial
melting of this mantle source produced K, REE, Th, and U-rich volcanic
materials with high radiation levels in the region. These results indicate that
the carbonatite-influenced mantle source were played a key role for not only
enrichments in distinct (e.g., Th, U and REE) elements but also high
radioactivity levels in Isparta volcanic and pyroclastic rocks. Here, attention
is drawn to the fact that a potential risk of high radiation in volcanic and
pyroclastic rocks used as building raw materials can be expected for a given
volcanic region, which include potassic magma derived from a carbonatite-modified
mantle source.

Kaynakça

  • [1] Kalyoncuoğlu Ü.Y., 2015. In situ gamma source radioactivity measurement in Isparta plain, Turkey. Environmental Earth Sciences, 73:3159–3175
  • [2] Kilic A.M., Aykamis A.S. 2009. The natural radioactivity levels and radiation hazard of pumice from the East Mediterranean Region of Turkey. Bulletin of Engineering Geology and Environment, 68: 331–338.
  • [3] Akkurt İ., Uyanık N.A., Günoğlu K. 2015. Radiation dose Estimation: An in vitro measurement for Isparta-Turkey. International Journal of Computational and Experimental Science and Engineering (IJCESEN), 1 (1): 1-4.
  • [4] Trevisi R., Risica S., D’Alessandro M., Paradiso D., Nuccetelli C. 2012. Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance. Journal of Environmental Radioactivity, 105: 11-20.
  • [5] Nuccetelli C., Risica1 S., D’Alessandro M., Trevisi R. 2012. Natural radioactivity in building material in the European Union: robustness of the activity concentration index I and comparison with a room model. Journal of Radiological Protection, 32: 349–358.
  • [6] Sas Z., Doherty R., Kovacs T., Soutsos M., Sha W., Schroeyers W. 2017. Radiological evaluation of by-products used in construction and alternative applications; Part I. Preparation of a natural radioactivity database. Construction and Building Materials, 150 (30): 227-237.
  • [7] Turhan Ş., Yücel H., Gündüz L., Şahin Ş., Vural M., Parmaksiz A., Demircioglu B. 2007. Natural radioactivity measurement in pumice samples used raw materials in Turkey. Applied Radiation and Isotopes, 65 (3): 350-354.
  • [8] Turhan Ş., Atıcı E., Varinlioğlu A. 2015. Radiometric analysis of volcanic tuff stones used as ornamental and structural building materials in Turkey and evaluation of radiological risk. Radioprotection, 50(4): 273-280.
  • [9] Turhan, S. 2008. Assessment of the natural radioactivity and radiological hazards in Turkish cement and its raw materials. Journal of Environmental Radioactivity, 99: 404-414.
  • [10] Uyanik N.A., Akkurt I., Uyanik O. 2010. A ground radiometric study of uranium, thorium and potassium in Isparta, Turkey. Annals of Geophysics, 53 (5-6): doi: 10.4401/ag-4726.
  • [11] Baykara O., Karatepe Ş., Doğru M. 2011. Assessments of natural radioactivity and radiological hazards in construction materials used in Elazig, Turkey. Radiation Measurements, 46 (1): 153-158.
  • [12] Çetin E., Altinsoy N., Örgün Y. 2012. Natural radioactivity levels of granites used in Turkey. Radiation Protection Dosimetry, 151 (2): 299–305.
  • [13] Değerlier M. 2013. Assessment of natural radioactivity and radiation hazard in volcanic tuff stones used as building and decoration materials in the Cappadocia region, Turkey. Radioprotection, 48 (2): 215-229.
  • [14] Tatar Erkül S., Özmen S.F., Erkül F., Boztosun İ. 2016. Comparison between natural radioactivity levels and geochemistry of some granitoids in western Turkey. Turkish Journal of Earth Science, 25: 242-255.
  • [15] Özdiş B.E., Çam N.F., Canbaz B., Öztürk B.C. 2017. Assessment of natural radioactivity in cements used as building materials in Turkey. Journal of Radioanalytical and Nuclear Chemistry, 311: 307–316.
  • [16] Turhan Ş., Gündüz L. 2008. Determination of specific activity of 226Ra, 232Th and 40K for assessment of radiation hazards from Turkish pumice samples. Journal of Environmental Radioactivity, 99 (2): 332-342.
  • [17] Görmüş M., Sagular E.K., Çoban H., 2002. The Miocene sequence characteristics, its contact relation to the older rocks and lamprophyric dykes in the Dereboğazı area (S Isparta, Turkey) Ö.T. Akıncı, M. Görmüş, M. Kuşçu, R. Karagüzel, M. Bozcu (Eds.), Proceedings of the 4th International Symposium on Eastern Mediterranean Geology, Süleyman Demirel University, Isparta, Turkey, 69-90.
  • [18] Kumral M., Çoban H., Gedikoglu A., Kilinc A. 2006. Petrology and geochemistry of augite trachytes and porphyritic trachytes from the Gölcük volcanic region, Isparta, SW Turkey: A case study. Journal of Asian Earth Sciences, 27 (5): 707-716.
  • [19] Elitok Ö., Özgür N., Drüppel K., Dilek Y., Platevoet B., Guillou H., Poisson A., Scaillet S., Satır M., Siebel W., Bardintzeff J.-M., Deniel C., Yılmaz K. 2010. Origin and geodynamic evolution of late Cenozoic potassium-rich volcanism in the Isparta area, southwestern Turkey. International Geology Review, 52 (4–6): 454-504.
  • [20] Sundal A.V., Strand T. 2004. Indoor gamma radiation and radon concentrations in a Norwegian carbonatite area. Journal of Environmental Radioactivity, 77 (2): 175-189.
  • [21] Kaniua M.I., Angeyo H.K., Darby I.G., Muiac L.M. 2018. Rapid in-situ radiometric assessment of the Mrima-Kiruku high background radiation anomaly complex of Kenya. Journal of Environmental Radioactivity, 188, 47-57.
  • [22] Kumral M., Çoban H., Caran Ş. 2007. Th, U and LREE-Bearing grossular, chromian ferriallanite-(Ce) and chromian cerite-(Ce) in skarn xenoliths ejected from the Gölcük maar crater, Isparta, Anatolia, Turkey. The Canadian Mineralogist, 45: 1119-1125.
  • [23] Platevoet B., Elitok Ö., Guillou H., Bardintzeff J.-M., Yağmurlu F., Nomade S., Poisson A., Deniel C., Özgür N. 2014. Petrology of Quaternary volcanic rocks and related plutonic xenoliths from Gölcük Volcano, Isparta Angle, Turkey: origin and evolution of the high-K alkaline series. Journal of Asian Earth Sciences, 92: 53-76.
  • [24] Caran Ş. 2016. Mineralogy and petrology of leucite ankaratrites with affinities to kamafugites and carbonatites from the Kayıköy area, Isparta, SW Anatolia, Turkey: implications for the influences of carbonatite metasomatism into the parental mantle sources of silica-undersaturated potassic magmas. Lithos, 256–257: 13-25.
  • [25] Yılmaz K. 2019. Geochemistry of ultramafic, mafic, and felsic xenoliths from the Gölcük (Isparta, SW Turkey) alkali rocks: genetic relationship with arc magmas. Arabian Journal of Geosciences, 12: 306. https://doi.org/10.1007/s12517-019-4461-6
  • [26] Uyanık N.A., Uyanık O., Akkurt İ. 2013. Micro-zoning of the natural radioactivity levels and seismic velocities of potential residential areas in volcanic fields: The case of Isparta (Turkey). Journal of Applied Geophysics 98: 191-204.
  • [27] Çoban H., Topuz G., Roden M.F., Hoang N., Schwarz W.H., 2019.40Ar-39Ar dating and petrology of monzonite ejecta in tephra from Quaternary Gölcük volcano (Isparta, SW Turkey): tear-related contrasting metasomatic symptoms in extensional mantle-derived magmas. Lithos, 330–331: 160-176.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Düzeltme Makalesi
Yazarlar

Hakan Çoban 0000-0002-9614-6818

Yayımlanma Tarihi 31 Aralık 2019
Gönderilme Tarihi 20 Ekim 2019
Kabul Tarihi 19 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 8

Kaynak Göster

IEEE H. Çoban, “Investigation of the High Radiation Levels in Plio-Quaternary Volcanic and Pyroclastic Rocks Used as Building Raw Materials in Isparta Volcanic Area, SW Turkey”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 8, ss. 77–83, 2019, doi: 10.17798/bitlisfen.635010.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr