Araştırma Makalesi
BibTex RIS Kaynak Göster

Ambrose Teoreminin Finsler Versiyonu Üzerine Bir Not

Yıl 2020, Cilt: 9 Sayı: 3, 1108 - 1114, 26.09.2020
https://doi.org/10.17798/bitlisfen.665977

Öz

(ℵ,F) manifoldu forward tam, bağlantılı ve n≥2 boyutlu bir Finsler manifold olsun. Bu çalışmada, Riemann manifoldlarında elde edilen Ambrose kompaktlık teoremi, ağırlıklı Ricci eğriliği kullanılarak Finsler manifoldlara genişletilmiştir. İstenilen sonuçların kanıtları için Bochner Weitzenböck formülü ve uygun dizi seçimleri kullanılmıştır.

Kaynakça

  • 1. Ohta S. 2009. Finsler interpolation inequalities. Calc. Var. Partial Differ. Equ., 36: 211-249.
  • 2. Wu B. 2013. A note on the generalized Myers theorem for Finsler manifolds. Bull. Korean Math. Soc., 50: 833–837.
  • 3. Yin S. 2017. Two compactness theorems on Finsler manifolds with positive weighted Ricci curvature. Results Math., 72: 319–327.
  • 4. Ambrose W. 1957. A theorem of Myers. Duke Math. J., 24: 345–348.
  • 5. Anastasiei M. 2015. Galloway’s compactness theorem on Finsler manifolds. Balkan J. Geom. Appl., 20: 1–8.
  • 6. Kim C.-W. 2017. On Existence and Distribution of Conjugate Points in Finsler Geometry. J. Chungcheong Math. Soc., 30: 369–379.
  • 7. Galloway G. J. 1982. Compactness criteria for Riemannian manifolds. Proc. Amer. Math. Soc., 84: 106–110.
  • 8. Zhang S. 2014. A theorem of Ambrose for Bakry-Emery Ricci tensor. Ann. Glob. Anal. Geom., 45: 233–238.
  • 9. Cavalcante M.P., Oliveira J.Q., Santos M.S. 2015. Compactness in weighted manifolds and applications. Results Math., 68: 143–156.
  • 10. Wu B., Xin Y. 2007. Comparison theorems in Finsler geometry and their applications. Math. Ann., 337: 177–196.
  • 11. Shen Z. 2001. Lectures on Finsler Geometry. World Scientific, Singapore.
  • 12. Ohta S., Sturm K.-T. 2014. Bochner-Weitzenböck formula and Li-Yau estimates on Finsler manifolds. Adv. Math., 252: 429–448.

A Note on Finsler Version of Ambrose Theorem

Yıl 2020, Cilt: 9 Sayı: 3, 1108 - 1114, 26.09.2020
https://doi.org/10.17798/bitlisfen.665977

Öz

Let (ℵ,F) be a forward complete and connected Finsler manifold of dimensional n≥2. In this study, we extend Ambrose’s compactness theorem in Riemannian manifolds to Finsler manifolds by using the weighted Ricci curvature. We use the Bochner Weitzenböck formula and suitable sequence choices for the proofs of the desired results.

Kaynakça

  • 1. Ohta S. 2009. Finsler interpolation inequalities. Calc. Var. Partial Differ. Equ., 36: 211-249.
  • 2. Wu B. 2013. A note on the generalized Myers theorem for Finsler manifolds. Bull. Korean Math. Soc., 50: 833–837.
  • 3. Yin S. 2017. Two compactness theorems on Finsler manifolds with positive weighted Ricci curvature. Results Math., 72: 319–327.
  • 4. Ambrose W. 1957. A theorem of Myers. Duke Math. J., 24: 345–348.
  • 5. Anastasiei M. 2015. Galloway’s compactness theorem on Finsler manifolds. Balkan J. Geom. Appl., 20: 1–8.
  • 6. Kim C.-W. 2017. On Existence and Distribution of Conjugate Points in Finsler Geometry. J. Chungcheong Math. Soc., 30: 369–379.
  • 7. Galloway G. J. 1982. Compactness criteria for Riemannian manifolds. Proc. Amer. Math. Soc., 84: 106–110.
  • 8. Zhang S. 2014. A theorem of Ambrose for Bakry-Emery Ricci tensor. Ann. Glob. Anal. Geom., 45: 233–238.
  • 9. Cavalcante M.P., Oliveira J.Q., Santos M.S. 2015. Compactness in weighted manifolds and applications. Results Math., 68: 143–156.
  • 10. Wu B., Xin Y. 2007. Comparison theorems in Finsler geometry and their applications. Math. Ann., 337: 177–196.
  • 11. Shen Z. 2001. Lectures on Finsler Geometry. World Scientific, Singapore.
  • 12. Ohta S., Sturm K.-T. 2014. Bochner-Weitzenböck formula and Li-Yau estimates on Finsler manifolds. Adv. Math., 252: 429–448.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Yasemin Soylu 0000-0001-9009-1214

Yayımlanma Tarihi 26 Eylül 2020
Gönderilme Tarihi 31 Aralık 2019
Kabul Tarihi 21 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 9 Sayı: 3

Kaynak Göster

IEEE Y. Soylu, “A Note on Finsler Version of Ambrose Theorem”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 9, sy. 3, ss. 1108–1114, 2020, doi: 10.17798/bitlisfen.665977.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr